Câu hỏi:

11/07/2024 652

Giải phương trình: \[\sqrt {2{x^2} + 11x + 19} + \sqrt {2{x^2} + 5x + 7} = 3\left( {x + 2} \right)\].

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đặt \[\sqrt {2{x^2} + 11x + 19} = a;\sqrt {2{x^2} + 5x + 7} = b\]

a2 – b2 = (2x2 + 11x + 19) – (2x2 + 5x + 7) = 6x +12 = 6(x + 2)

Ta có hệ phương trình:

\(\left\{ \begin{array}{l}a + b = 3\left( {x + 2} \right)\left( 1 \right)\\{a^2} - {b^2} = 6\left( {x + 2} \right)\left( 2 \right)\end{array} \right.\)

\(\left\{ \begin{array}{l}a + b = 3\left( {x + 2} \right)\\\left( {a + b} \right)\left( {a - b} \right) = 6\left( {x + 2} \right)\end{array} \right.\)

a – b = 2

a = b + 2

Thay vào (1) khi đó ta có:

(b + 2) + b = 3(x + 2)

2b = 3x + 4

\[2\sqrt {2{x^2} + 5x + 7} = 3x + 4\]

4(2x2 + 5x + 7) = (3x + 4)2 (điều kiện: x > \(\frac{{ - 4}}{3}\))

x2 + 4x – 12 = 0

(x – 2)(x + 6) = 0

\(\left[ \begin{array}{l}x = 2\\x = - 6\left( L \right)\end{array} \right.\)

Vậy phương trình có nghiệm duy nhất x = 2.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Gọi A là biến cố: “bạn A thi đỗ”, B là biến cố: “bạn B thi đỗ”, C là biến cố: “chỉ có một bạn thi đỗ”.

* Trường hợp 1: A thi đỗ, B thi không đỗ.

\(P\left( {A.\overline B } \right) = P\left( A \right).P\left( {\overline B } \right)\)= 0,6 . 0,4 = 0,24.

 * Trường hợp 2: A thi không đỗ, B thi đỗ.

\(P\left( {\overline A .B} \right) = P\left( {\overline A } \right).P\left( B \right)\) = 0,4 . 0,6 = 0,24.

Theo quy tắc cộng xác suất, ta có

P(C) = \(P\left( {A.\overline B } \right) + P\left( {\overline A .B} \right)\)= 0,24 + 0,24 = 0,48.

Lời giải

Gọi x (km) là độ dài quãng đường AB,

y (giờ) là thời gian dự định đi đến B lúc đầu. (x > 0, y > 1)

Thời gian đi từ A đến B với vận tốc 35km là:

\(\frac{x}{{35}}\) = y + 2 x = 35.(y + 2) (1)

Thời gian đi từ A và B với vận tốc 50km là: \(\frac{x}{{50}}\) = y − 1 x = 50.(y − 1) (2)

Từ (1) và (2) ta có:

35.(y + 2) = 50.(y − 1)

35y + 70 = 50y – 50

y = 8

x = 35.(y + 2) = 35.10 = 350 (km)

Vậy quãng đường AB là 350km và thời gian dự định đi lúc đầu là 8 giờ.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP