Câu hỏi:

11/07/2024 350

Trong một phòng họp có 360 ghế được xếp thành các dãy và số ghế trong mỗi dãy đều bằng nhau. Có một lần phòng họp phải xếp thêm một dãy ghế và mỗi dãy tăng một ghế (số ghế trong các dãy vẫn bằng nhau) để đủ chỗ cho 400 đại biểu. Hỏi bình thường trong phòng có bao nhiêu dãy ghế?

Sale Tết giảm 50% 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 49k/cuốn).

20 đề Toán 20 đề Văn Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Gọi x (dãy) là số dãy ghế ban đầu của phòng họp.

Điều kiện: x  ℕ*

Khi đó số ghế ngồi trong một dãy là: \(\frac{{360}}{x}\)(ghế)

Số dãy ghế sau khi tăng là x + 1 (dãy)

Số ghế ngồi trong một dãy sau khi tăng là: \(\frac{{400}}{{x + 1}}\) (ghế)

Theo đề bài, ta có phương trình: \(\frac{{400}}{{x + 1}} - \frac{{360}}{x} = 1\)

\(\frac{{400x}}{{x\left( {x + 1} \right)}} - \frac{{360\left( {x + 1} \right)}}{{x\left( {x + 1} \right)}} = \frac{{x\left( {x + 1} \right)}}{{x\left( {x + 1} \right)}}\)

400x −360(x + 1) = x(x + 1)

 400x – 360x – 360 = x+ x

 x2 – 39x + 360 = 0

(x – 24)(x – 15) = 0

\(\left[ \begin{array}{l}x = 24\\x = 15\end{array} \right.\)

Vậy bình thường phòng có 15 hoặc 24 dãy ghế.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Trong một kì thi có 60% thí sinh thi đỗ. Hai bạn A và B cùng dự thi đó. Xác suất để chỉ có 1 bạn thi đỗ?

Xem đáp án » 12/07/2024 35,879

Câu 2:

Trong mặt phẳng, cho tam giác ABC có AC = 4 cm, \(\widehat A\)= 60°, \(\widehat B\)= 45°. Độ dài cạnh BC là?

Xem đáp án » 12/07/2024 31,464

Câu 3:

Một ô tô dự định đi từ A đến B trong một thời gian nhất định. Nếu xe chạy với vận tốc 35km/h thì đến nơi chậm mất 2 giờ. Nếu xe chạy với vận tốc 50km/h thì đến nơi sớm hơn 1 giờ. Tìm quãng đường AB và thời gian dự định đi lúc đầu.

Xem đáp án » 12/07/2024 26,149

Câu 4:

Cho tứ diện ABCD. Gọi I, J lần lượt là trung điểm của BC, BD. (P) là mp qua IJ và cắt AC, AD lần lượt tại N, M. Chứng minh tứ giác IJMN là hình thang. Nếu M là trung điểm AD thì tứ giác IJMN là hình gì?

Xem đáp án » 12/07/2024 20,307

Câu 5:

Tìm số hạng đầu tiên của cấp số nhân, biết rằng công bội là 3, tổng các số hạng là 728 và số hạng cuối là 486.

Xem đáp án » 12/07/2024 14,892

Câu 6:

Cho tam giác ABC (AB < AC) có ba góc nhọn nội tiếp trong đường tròn tâm O, bán kính R. Gọi H là giao điểm của ba đường cao AD, BE, CF của tam giác ABC.

a) Chứng minh rằng AEHF và AEDB là các tứ giác nội tiếp đường tròn.

b) Vẽ đường kính AK của đường tròn (O). Chứng minh tam giác ABD và tam giác AKC đồng dạng với nhau. Suy ra AB.AC = 2R.AD.

c) Chứng minh OC vuông góc với DE.

Xem đáp án » 12/07/2024 14,245

Câu 7:

Cho hình bình hành ABCD: AB = 2 , AD = 1, \(\widehat {BAD} = 60^\circ \). Tính \(\overrightarrow {AB} .\overrightarrow {AD} \).

Xem đáp án » 11/07/2024 14,221

Bình luận


Bình luận