Câu hỏi:

11/07/2024 506

Một trường có 30 học sinh giỏi toán 25 học sinh giỏi văn và 5 học sinh giỏi cả văn và toán nhà trường quyết định chọn một học sinh giỏi văn hoặc toán đi dự trại hè toàn quốc hỏi nhà trường có bao nhiêu cách để chọn?

Sách mới 2k7: 30 đề đánh giá năng lực DHQG Hà Nội, Tp. Hồ Chí Minh, BKHN 2025 mới nhất (chỉ từ 110k).

Mua bộ đề Hà Nội Mua bộ đề Tp. Hồ Chí Minh Mua đề Bách Khoa

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Số học sinh chỉ giỏi Toán là: 30 – 5 = 25 (học sinh)

Số học sinh chỉ giỏi Văn là: 25 – 5 = 20 (học sinh)

Số học sinh giỏi văn hoặc toán hoặc giỏi cả 2 môn là: 25 + 20 + 5 = 50 (học sinh)

Nhà trường có thể chọn 1 trong 50 bạn trên nên có 50 cách chọn.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Trong một kì thi có 60% thí sinh thi đỗ. Hai bạn A và B cùng dự thi đó. Xác suất để chỉ có 1 bạn thi đỗ?

Xem đáp án » 12/07/2024 34,674

Câu 2:

Trong mặt phẳng, cho tam giác ABC có AC = 4 cm, \(\widehat A\)= 60°, \(\widehat B\)= 45°. Độ dài cạnh BC là?

Xem đáp án » 12/07/2024 31,336

Câu 3:

Một ô tô dự định đi từ A đến B trong một thời gian nhất định. Nếu xe chạy với vận tốc 35km/h thì đến nơi chậm mất 2 giờ. Nếu xe chạy với vận tốc 50km/h thì đến nơi sớm hơn 1 giờ. Tìm quãng đường AB và thời gian dự định đi lúc đầu.

Xem đáp án » 12/07/2024 25,064

Câu 4:

Cho tứ diện ABCD. Gọi I, J lần lượt là trung điểm của BC, BD. (P) là mp qua IJ và cắt AC, AD lần lượt tại N, M. Chứng minh tứ giác IJMN là hình thang. Nếu M là trung điểm AD thì tứ giác IJMN là hình gì?

Xem đáp án » 12/07/2024 20,276

Câu 5:

Tìm số hạng đầu tiên của cấp số nhân, biết rằng công bội là 3, tổng các số hạng là 728 và số hạng cuối là 486.

Xem đáp án » 12/07/2024 14,833

Câu 6:

Cho hình bình hành ABCD: AB = 2 , AD = 1, \(\widehat {BAD} = 60^\circ \). Tính \(\overrightarrow {AB} .\overrightarrow {AD} \).

Xem đáp án » 11/07/2024 14,081

Câu 7:

Cho tam giác ABC (AB < AC) có ba góc nhọn nội tiếp trong đường tròn tâm O, bán kính R. Gọi H là giao điểm của ba đường cao AD, BE, CF của tam giác ABC.

a) Chứng minh rằng AEHF và AEDB là các tứ giác nội tiếp đường tròn.

b) Vẽ đường kính AK của đường tròn (O). Chứng minh tam giác ABD và tam giác AKC đồng dạng với nhau. Suy ra AB.AC = 2R.AD.

c) Chứng minh OC vuông góc với DE.

Xem đáp án » 12/07/2024 13,458

Bình luận


Bình luận