Câu hỏi:

12/07/2024 3,680

Cho (O) đường kính AC . trên đoạn OC lấy điểm B và vẽ đường tròn tâm O', đường kính BC. Gọi M là trung điểm của đoạn AB . Từ M vẽ dây cung DE vuông góc với AB, DC cắt đường tròn tâm O' tại I.

1. Tứ giác ADBE là hình gì?

2. Chứng minh DMBI nội tiếp.

3. Chứng minh B, I ,E Thẳng hàng và MI = MD.

4. Chứng minh MC.DB = MI.DC.

5. Chứng minh MI là tiếp tuyến của (O').

Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).

Tổng ôn toán Tổng ôn sử Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Cho (O) đường kính AC . trên đoạn OC lấy điểm B và vẽ đường tròn tâm O' (ảnh 1)

1) Ta có OM DE tại M

Nên M là trung điểm của DE(quan hệ đường kính – dây cung)

Xét tứ giác ADBE, ta có:

M là trung điểm của AB(gt)

M là trung điểm của DE(cmt)

AB DE tại M (gt)

Nên tứ giác ADBE là hình thoi

2) Ta có: \(\widehat {BIC} = 90^\circ \)(góc nội tiếp chắn nửa đường tròn)

Vậy tứ giác DMBI có \(\widehat {DMB} = \widehat {BIC} = 90^\circ \)

Nên DMBI nội tiếp (góc ngoài bằng góc đối trong)

3) Ta có \(\widehat {ADC} = \widehat {BIC} = 90^\circ \)(góc nội tiếp chắn nửa đường tròn)

Nên AD DC và BI DC

AD // BI

Mà AD // BE (vì ADBE là hình thoi)

Do đó BI ≡ BE B, I, E thẳng hàng

Vậy ΔDIEvuông tại I có IM là đường trung tuyến nên MI = MD

4) Vì DMBI nội tiếp nên \(\widehat {BMI} = \widehat {BDI}\)(cùng chắn cung BI)

Xét ΔMICΔ và ΔDBC, ta có:

\(\widehat {BMI} = \widehat {BDI}\)

\(\widehat {MCI}\)là góc chung

Nên ΔMIC ~ ΔDBC(g.g)

\(\frac{{MI}}{{DB}} = \frac{{MC}}{{DC}}\)

MC.DB = MI.DC

5) Ta có:

\[\widehat {MIB} = \widehat {MDB}\](vì DMBI nội tiếp)

\[\widehat {MDA} = \widehat {MDB}\](vì ADBE là hình thoi)

\[\widehat {MDA} = \widehat {BCI}\] (cùng phụ \(\widehat {DAM}\))

 (trong (O′)

Nên  (trong (O′)

Vậy MI là tiếp tuyến của (O′).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Trong một kì thi có 60% thí sinh thi đỗ. Hai bạn A và B cùng dự thi đó. Xác suất để chỉ có 1 bạn thi đỗ?

Xem đáp án » 12/07/2024 32,985

Câu 2:

Trong mặt phẳng, cho tam giác ABC có AC = 4 cm, \(\widehat A\)= 60°, \(\widehat B\)= 45°. Độ dài cạnh BC là?

Xem đáp án » 12/07/2024 29,955

Câu 3:

Một ô tô dự định đi từ A đến B trong một thời gian nhất định. Nếu xe chạy với vận tốc 35km/h thì đến nơi chậm mất 2 giờ. Nếu xe chạy với vận tốc 50km/h thì đến nơi sớm hơn 1 giờ. Tìm quãng đường AB và thời gian dự định đi lúc đầu.

Xem đáp án » 12/07/2024 23,144

Câu 4:

Cho tứ diện ABCD. Gọi I, J lần lượt là trung điểm của BC, BD. (P) là mp qua IJ và cắt AC, AD lần lượt tại N, M. Chứng minh tứ giác IJMN là hình thang. Nếu M là trung điểm AD thì tứ giác IJMN là hình gì?

Xem đáp án » 12/07/2024 19,006

Câu 5:

Tìm số hạng đầu tiên của cấp số nhân, biết rằng công bội là 3, tổng các số hạng là 728 và số hạng cuối là 486.

Xem đáp án » 12/07/2024 14,321

Câu 6:

Cho tam giác ABC (AB < AC) có ba góc nhọn nội tiếp trong đường tròn tâm O, bán kính R. Gọi H là giao điểm của ba đường cao AD, BE, CF của tam giác ABC.

a) Chứng minh rằng AEHF và AEDB là các tứ giác nội tiếp đường tròn.

b) Vẽ đường kính AK của đường tròn (O). Chứng minh tam giác ABD và tam giác AKC đồng dạng với nhau. Suy ra AB.AC = 2R.AD.

c) Chứng minh OC vuông góc với DE.

Xem đáp án » 12/07/2024 12,670

Câu 7:

Cho hình bình hành ABCD: AB = 2 , AD = 1, \(\widehat {BAD} = 60^\circ \). Tính \(\overrightarrow {AB} .\overrightarrow {AD} \).

Xem đáp án » 11/07/2024 11,556

Bình luận


Bình luận
Đăng ký gói thi VIP

VIP 1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 2 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 3 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 4 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

Vietjack official store