Câu hỏi:

11/07/2024 1,276

Tìm GTLN, GTNN của biểu thức A = \(\frac{{{x^2} - 8x + 25}}{{{x^2} - 6x + 25}}\).

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Ta có: \(A - \frac{1}{2} = \frac{{{x^2} - 8x + 25}}{{{x^2} - 6x + 25}} - \frac{1}{2}\)

\(A - \frac{1}{2} = \frac{{2\left( {{x^2} - 8x + 25} \right)}}{{2\left( {{x^2} - 6x + 25} \right)}} - \frac{{{x^2} - 8x + 25}}{{2\left( {{x^2} - 6x + 25} \right)}}\)

\(A - \frac{1}{2} = \frac{{2{x^2} - 16x + 50 - {x^2} + 6x - 25}}{{2\left( {{x^2} - 6x + 25} \right)}}\)

\(A - \frac{1}{2} = \frac{{{x^2} - 10x + 25}}{{2\left( {{x^2} - 6x + 25} \right)}}\)

\(A - \frac{1}{2} = \frac{{{{\left( {x - 5} \right)}^2}}}{{2\left( {{x^2} - 6x + 25} \right)}} \ge 0,\forall x\)

\(A \ge \frac{1}{2}\)

Dấu “=” xảy ra khi x – 5 = 0 hay x = 5

Lại có: A = \(\frac{{{x^2} - 8x + 25}}{{{x^2} - 6x + 25}}\)

\(A - \frac{9}{8} = \frac{{{x^2} - 8x + 25}}{{{x^2} - 6x + 25}} - \frac{9}{8}\)

\[A - \frac{9}{8} = \frac{{8\left( {{x^2} - 8x + 25} \right)}}{{8\left( {{x^2} - 6x + 25} \right)}} - \frac{{9\left( {{x^2} - 8x + 25} \right)}}{{8\left( {{x^2} - 6x + 25} \right)}}\]

\[A - \frac{9}{8} = \frac{{8{x^2} - 64x + 200 - 9{x^2} + 54x - 225}}{{8\left( {{x^2} - 6x + 25} \right)}}\]

\[A - \frac{9}{8} = \frac{{ - {x^2} - 10x - 25}}{{8\left( {{x^2} - 6x + 25} \right)}}\]

\[A - \frac{9}{8} = \frac{{ - {{\left( {x + 5} \right)}^2}}}{{8\left( {{x^2} - 6x + 25} \right)}} \le 0,\forall x\]

Suy ra: \(A \le \frac{9}{8}\)

Dấu “=” xảy ra khi x + 5 = 0 hay x = –5

Vậy x = 5 thì biểu thức có GTNN là \(\frac{1}{2}\) và x = –5 thì biểu thức có GTLN là \(\frac{9}{8}\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Gọi A là biến cố: “bạn A thi đỗ”, B là biến cố: “bạn B thi đỗ”, C là biến cố: “chỉ có một bạn thi đỗ”.

* Trường hợp 1: A thi đỗ, B thi không đỗ.

\(P\left( {A.\overline B } \right) = P\left( A \right).P\left( {\overline B } \right)\)= 0,6 . 0,4 = 0,24.

 * Trường hợp 2: A thi không đỗ, B thi đỗ.

\(P\left( {\overline A .B} \right) = P\left( {\overline A } \right).P\left( B \right)\) = 0,4 . 0,6 = 0,24.

Theo quy tắc cộng xác suất, ta có

P(C) = \(P\left( {A.\overline B } \right) + P\left( {\overline A .B} \right)\)= 0,24 + 0,24 = 0,48.

Lời giải

Gọi x (km) là độ dài quãng đường AB,

y (giờ) là thời gian dự định đi đến B lúc đầu. (x > 0, y > 1)

Thời gian đi từ A đến B với vận tốc 35km là:

\(\frac{x}{{35}}\) = y + 2 x = 35.(y + 2) (1)

Thời gian đi từ A và B với vận tốc 50km là: \(\frac{x}{{50}}\) = y − 1 x = 50.(y − 1) (2)

Từ (1) và (2) ta có:

35.(y + 2) = 50.(y − 1)

35y + 70 = 50y – 50

y = 8

x = 35.(y + 2) = 35.10 = 350 (km)

Vậy quãng đường AB là 350km và thời gian dự định đi lúc đầu là 8 giờ.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP