Câu hỏi:
15/08/2023 1,548Tìm số các nghiệm nguyên không âm (x; y; z) của phương trình x + y + z = 10.
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Đáp án đúng là: C
Do \[\left\{ \begin{array}{l}x,\,\,y,\,\,z \in \mathbb{Z}\\x,\,\,y,\,\,z \ge 0\\x + y + z = 10\end{array} \right. \Rightarrow x,\,\,y,\,\,z \le 10\].
Các cặp 3 số nguyên không âm có tổng bằng 10 là
(0; 0; 10); (0; 1; 9); (0; 2; 8); (0; 3; 7); (0; 4; 6); (0; 5; 5); (1; 1; 8); (1; 2; 7); (1; 3; 6); (1; 4; 5); (2; 2; 6); (2; 3; 5); (2; 4; 4); (3; 3; 4).
Với mỗi bộ 3 số khác nhau có 3! cách hoán vị, có 8 bộ số như vậy/
Với mỗi bộ có 2 số giống nhau có \(\frac{{3!}}{{2!}} = 3\) cách hoán vị, có 6 bộ số như vậy.
Vậy có tất cả 3!.8 + 3.6 = 66 (số).
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho hàm số f(x) = ax4 + bx3 + cx2 (a, b, c ∈ ℝ). Hàm số y = f '(x) có đồ thị như trong hình bên. Số nghiệm thực phân biệt của phương trình 2f(x) + 3 = 0.
Câu 2:
Tìm m để đường thẳng y = mx + 1 cắt đồ thị hàm số \(y = \frac{{x + 1}}{{x - 1}}\) tại hai điểm thuộc nhánh của đồ thị.
Câu 3:
Cho hình chóp S.ABCD có đáy là hình thang vuông tại A và B. Biết AB = BC = a, AD = 2a và SA vuông góc với mặt phẳng (ABCD) và \(SA = a\sqrt 2 \). Gọi M là trung điểm AD. Khoảng cách giữa hai đường thẳng BM và SC bằng
Câu 5:
Cho hàm số y = f( x) có đạo hàm là hàm số y = f’(x) trên R. Biết rằng hàm số y = f ' (x – 2) + 2 có đồ thị như hình vẽ bên dưới. Hàm số y = f( x) nghịch biến trên khoảng nào?
về câu hỏi!