Câu hỏi:
13/07/2024 1,328Cho hình vuông ABCD có cạnh bằng a và có diện tích S1. Nối 4 điểm A1; B1; C1; D1 theo thứ tự của 4 cạnh AB, BC, CD, DA ta được hình vuông thứ hai có diện tích S2. Tiếp tục làm như thế, ta được hình vuông thứ ba là A2B2C2D2 có diện tích S3, … và cứ tiếp tục làm như thế, ta tính được các hình vuông lần lượt có diện tích, … , S100 (tham khảo hình bên). Tính tổng S = S1 + S2 + S3 + … + S100.
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Ta có: S1 = a2; \({S_2} = \frac{1}{2}{a^2};{S_3} = \frac{1}{4}{a^2}\); …
Do đó S1; S2; S3; …; S100 là cấp số nhân với số hạng đầu u1 = S1 = a2 và công bội \(q = \frac{1}{2}\).
Suy ra S = S1 + S2 + S3 + … + S100 = \({S_1}.\frac{{1 - {q^n}}}{{1 - q}} = \frac{{{a^2}\left( {{2^{100}} - 1} \right)}}{{{2^{99}}}}\).
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho hàm số f(x) = ax4 + bx3 + cx2 (a, b, c ∈ ℝ). Hàm số y = f '(x) có đồ thị như trong hình bên. Số nghiệm thực phân biệt của phương trình 2f(x) + 3 = 0.
Câu 2:
Tìm m để đường thẳng y = mx + 1 cắt đồ thị hàm số \(y = \frac{{x + 1}}{{x - 1}}\) tại hai điểm thuộc nhánh của đồ thị.
Câu 3:
Cho hình chóp S.ABCD có đáy là hình thang vuông tại A và B. Biết AB = BC = a, AD = 2a và SA vuông góc với mặt phẳng (ABCD) và \(SA = a\sqrt 2 \). Gọi M là trung điểm AD. Khoảng cách giữa hai đường thẳng BM và SC bằng
Câu 5:
Tìm số các nghiệm nguyên không âm (x; y; z) của phương trình x + y + z = 10.
Câu 6:
Cho hàm số y = f( x) có đạo hàm là hàm số y = f’(x) trên R. Biết rằng hàm số y = f ' (x – 2) + 2 có đồ thị như hình vẽ bên dưới. Hàm số y = f( x) nghịch biến trên khoảng nào?
Câu 7:
Cho hình bình hành ABCD, giao điểm của hai đường chéo là O. Tìm mệnh đề sai trong các mệnh đề sau:
về câu hỏi!