Câu hỏi:
15/08/2023 3,140Cho hình chóp S.ABCD có đáy là hình thang vuông tại A và B. Biết AB = BC = a, AD = 2a và SA vuông góc với mặt phẳng (ABCD) và \(SA = a\sqrt 2 \). Gọi M là trung điểm AD. Khoảng cách giữa hai đường thẳng BM và SC bằng
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Đáp án đúng là: A
Xét tứ giác BMDC có: MD // BC và MD = BC = a
Do đó tứ giác BMDC là hình bình hành
Suy ra BM // CD nên BM // (SCD)
Khi đó d(BM, SC) = d(BM, (SCD)) = d(M, (SCD))
Mà d(M, (SCD) = \(\frac{1}{2}d\left( {A,(SCD)} \right)\)
Nên \(d(BM,SC) = \frac{1}{2}d(A,(SCD))\)
• Tứ giác AMCB là hình vuông nên cạnh AB = a nên \(AC = a\sqrt 2 \), CM = a
Do đó tam giác ACD có \(CM = \frac{1}{2}AD\) nên tam giác ACD vuông tại C hay AC ⊥ CD.
• Kẻ AH ⊥ SC tại H (1)
Ta có: \(\left\{ \begin{array}{l}CD \bot AC\\CD \bot SA\end{array} \right. \Rightarrow CD \bot (SAC) \Rightarrow (SCD) \bot (SAC)\) (2)
Từ (1) và (2) suy ra AH ⊥ (SCD) nên AH = d(A, (SCD))
Do \(SA = AC = a\sqrt 2 \) và SA⊥AC nên tam giác SAC vuông cân tại A.
⇒ H là trung điểm của SC
\( \Rightarrow AH = \frac{1}{2}SC = \frac{1}{2}\,.\,\sqrt 2 \,.\,SA = a\)
Vậy \(d(BM,SC) = \frac{a}{2}\).
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho hàm số f(x) = ax4 + bx3 + cx2 (a, b, c ∈ ℝ). Hàm số y = f '(x) có đồ thị như trong hình bên. Số nghiệm thực phân biệt của phương trình 2f(x) + 3 = 0.
Câu 2:
Tìm m để đường thẳng y = mx + 1 cắt đồ thị hàm số \(y = \frac{{x + 1}}{{x - 1}}\) tại hai điểm thuộc nhánh của đồ thị.
Câu 4:
Tìm số các nghiệm nguyên không âm (x; y; z) của phương trình x + y + z = 10.
Câu 5:
Cho hàm số y = f( x) có đạo hàm là hàm số y = f’(x) trên R. Biết rằng hàm số y = f ' (x – 2) + 2 có đồ thị như hình vẽ bên dưới. Hàm số y = f( x) nghịch biến trên khoảng nào?
về câu hỏi!