Câu hỏi:
15/08/2023 160Cho hình chóp S.ABC có đáy ABC là tam giác vuông cân tại B, AB = a. Cạnh bên SA = \[a\sqrt 2 \], hình chiếu của điểm S lên mặt phẳng đáy trùng với trung điểm của cạnh huyền AC. Bán kính mặt cầu ngoại tiếp khối chóp S.ABC.
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
ΔABC vuông cân tại B có AB = a
\[ \Rightarrow AC = a\sqrt 2 \]
Gọi M là trung điểm AC
\[ \Rightarrow MA = MB = MC = \frac{1}{2}AC = a\sqrt 2 ;\,\,SM \bot (ABC)\]
Þ SM là trục của mặt phẳng đáy (ABC)
Gọi N là trung điểm SA
Trong mp(SAM) kẻ NI ⊥ SA (I ∈ SM)
Þ I là tâm mặt cầu ngoại tiếp khối chóp S.ABC
Ta có: ΔSNI ᔕ ΔSMA (g.g)
\[ \Rightarrow \frac{{SN}}{{SM}} = \frac{{SI}}{{SA}}\]
\[ \Rightarrow SI = R = \frac{{SA.SN}}{{SM}}\]
\[ \Rightarrow R = \frac{{S{A^2}}}{{2SM}} = \frac{{S{A^2}}}{{2\sqrt {S{A^2} - A{M^2}} }}\]
\[ \Rightarrow R = \frac{{a\sqrt 6 }}{3}\]
Vậy \[R = \frac{{a\sqrt 6 }}{3}\].
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 2:
Gọi a và b lần lượt là giá trị lớn nhất và bé nhất của hàm số y = ln(2x2 + e2) trên [0; e]. Tính tổng a + b.
Câu 3:
Cho tập A = {0; 1; 2; 3; 4; 5; 6}. Gọi X là tập các số tự nhiên có 5 chữ số khác nhau được lập từ A. Chọn một số từ X, tính xác suất sao cho số được chọn có đúng 3 chữ số chẵn.
Câu 4:
Cho hàm số f(x) thỏa mãn \[f\left( 2 \right) = - \frac{2}{9}\]và f ′(x) = 2x[f(x)]2 với mọi \[x \in \mathbb{R}\]. Tính giá trị của f(1).
Câu 7:
Một trường có 50 học sinh giỏi trong đó có 4 cặp anh em sinh đôi. Cần chọn ra 3 học sinh trong số 50 học sinh để tham dự trại hè. Tính xác suất trong 3 em ấy không có cặp anh em sinh đôi?
về câu hỏi!