Câu hỏi:
13/07/2024 517Tổng tất cả các giá trị nguyên của tham số m để đồ thị hàm số:
y = ∣3x4 + 8x3 − 6x2 − 24x − m∣ có 7 điểm cực trị.
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Xét hàm số: y = 3x4 + 8x3 − 6x2 − 24x – m
Ta có: y’ = 12x3 + 24x2 – 1x – 24 = 0
\[ \Leftrightarrow \left[ \begin{array}{l}x = 1\\x = - 1\\x = - 2\end{array} \right.\]
Bảng biến thiên:
Dựa vào bảng biến thiên ta thấy để đồ thị hàm số y = ∣3x4 + 8x3 − 6x2 − 24x − m∣ có 7 điểm cực trị.
\[ \Leftrightarrow \left[ \begin{array}{l}8 - m < 0\\13 - m > 0\end{array} \right. \Leftrightarrow 8 < m < 13\]
\[ \Rightarrow m \in \left\{ {9;\,\,10;\,\,11;\,\,12} \right\}\].
Tổng tất cả các giá trị của m thỏa mãn bài toán là: 9 + 10 + 11 + 12 = 42.
Vậy tổng các giá trị m thoả mãn là 42.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 2:
Gọi a và b lần lượt là giá trị lớn nhất và bé nhất của hàm số y = ln(2x2 + e2) trên [0; e]. Tính tổng a + b.
Câu 3:
Cho tập A = {0; 1; 2; 3; 4; 5; 6}. Gọi X là tập các số tự nhiên có 5 chữ số khác nhau được lập từ A. Chọn một số từ X, tính xác suất sao cho số được chọn có đúng 3 chữ số chẵn.
Câu 4:
Cho hàm số f(x) thỏa mãn \[f\left( 2 \right) = - \frac{2}{9}\]và f ′(x) = 2x[f(x)]2 với mọi \[x \in \mathbb{R}\]. Tính giá trị của f(1).
Câu 7:
Một trường có 50 học sinh giỏi trong đó có 4 cặp anh em sinh đôi. Cần chọn ra 3 học sinh trong số 50 học sinh để tham dự trại hè. Tính xác suất trong 3 em ấy không có cặp anh em sinh đôi?
về câu hỏi!