Câu hỏi:
13/07/2024 360Cho tam giác ABC, có bao nhiêu điểm M thỏa mãn: \[\left| {\overrightarrow {MA} + \overrightarrow {MB} + \overrightarrow {MC} } \right| = 3?\]
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Gọi G là trọng tâm tam giác ABC.
Ta có: \[\left| {\overrightarrow {MA} + \overrightarrow {MB} + \overrightarrow {MC} } \right| = 3\]
\[ \Leftrightarrow \left| {3\overrightarrow {MG} + \overrightarrow {GA} + \overrightarrow {GB} + \overrightarrow {GC} } \right| = 3\]
\[ \Leftrightarrow \left| {3\overrightarrow {MG} + \vec 0} \right| = 3 \Leftrightarrow \left| {\overrightarrow {MG} } \right| = 1 \Leftrightarrow MG = 1\].
Tập hợp các điểm M thỏa mãn yêu cầu đề bài là đường tròn tâm G bán kính 1.
Vậy có vô số điểm M thỏa mãn.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 2:
Gọi a và b lần lượt là giá trị lớn nhất và bé nhất của hàm số y = ln(2x2 + e2) trên [0; e]. Tính tổng a + b.
Câu 3:
Cho tập A = {0; 1; 2; 3; 4; 5; 6}. Gọi X là tập các số tự nhiên có 5 chữ số khác nhau được lập từ A. Chọn một số từ X, tính xác suất sao cho số được chọn có đúng 3 chữ số chẵn.
Câu 4:
Cho hàm số f(x) thỏa mãn \[f\left( 2 \right) = - \frac{2}{9}\]và f ′(x) = 2x[f(x)]2 với mọi \[x \in \mathbb{R}\]. Tính giá trị của f(1).
Câu 7:
Một trường có 50 học sinh giỏi trong đó có 4 cặp anh em sinh đôi. Cần chọn ra 3 học sinh trong số 50 học sinh để tham dự trại hè. Tính xác suất trong 3 em ấy không có cặp anh em sinh đôi?
về câu hỏi!