Cho tích phân \[I = \mathop \smallint \limits_0^1 \frac{{{x^7}}}{{{{\left( {1 + {x^2}} \right)}^5}}}dx\], giả sử đặt t = 1 + x2. Tính tích phân I.
Cho tích phân \[I = \mathop \smallint \limits_0^1 \frac{{{x^7}}}{{{{\left( {1 + {x^2}} \right)}^5}}}dx\], giả sử đặt t = 1 + x2. Tính tích phân I.
Quảng cáo
Trả lời:
Ta có \[I = \mathop \smallint \limits_0^1 \frac{{{x^7}}}{{{{\left( {1 + {x^2}} \right)}^5}}}dx = \mathop \smallint \limits_0^1 \frac{{{x^6}.x}}{{{{\left( {1 + {x^2}} \right)}^5}}}dx\]
Đặt t = 1 + x2 ⇒ dt = 2xdx và x2 = t – 1
Đổi cận \[\left\{ \begin{array}{l}x = 0 \Rightarrow t = 1\\x = 1 \Rightarrow t = 2\end{array} \right.\]
\[ \Rightarrow I = \frac{1}{2}\mathop \smallint \limits_1^2 \frac{{{{\left( {t - 1} \right)}^3}dt}}{{{t^5}}}\]
Vậy \[I = \frac{1}{2}\mathop \smallint \limits_1^2 \frac{{{{\left( {t - 1} \right)}^3}dt}}{{{t^5}}}\].
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
(sin2 x)’ = 2sin x.(sin x)’ = 2sin x cos x = sin 2x.
Vậy đạo hàm của hàm số sin2 x là sin 2x.
Lời giải
Ta có: cosx ∈ [−1; 1]
Để phương trình có nghiệm thì:
− 1 ≤ m − 1 ≤ 1 suy ra 0 ≤ m ≤ 2
Vậy m ∈ [0; 2].
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.