Câu hỏi:

15/08/2023 28,559 Lưu

Gọi S là tập hợp các số tự nhiên có hai chữ số. Chọn ngẫu nhiên đồng thời hai số từ tập hợp S. tính xác suất để hai số được chọn có chữ số hàng đơn vị giống nhau.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là: A

Số tự nhiên có 2 chữ số là: \(C_9^1.C_{10}^1 = 90\) (số).

\(\Omega :\) “Chọn ngẫu nhiên 2 số từ tập hợp S” \({n_\Omega } = C_{90}^2\)

A: “Chọn được 2 số có chữ số hàng đơn vị giống nhau”.

· TH1: Chữ số hàng đơn vị là 0 Có 9 chữ số là: 10; 20; 30; 40; 50; 60; 70; 80; 90.

 Số cách chọn 2 số là: \(C_9^2.\)

Tương tự với các số có chữ số hàng đơn vị là: 1; 2; 3; 4; 5; 6; 7; 8; 9.

 Có tất cả 10 trường hợp giống nhau.

\({n_A} = 10.C_9^2\)

\({P_A} = \frac{{10.C_9^2}}{{C_{90}^2}} = \frac{8}{{89}}.\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Có tất cả 5 + 4 + 3 = 12 quyển sách.

Cách sắp xếp các quyển sách một cách tùy ý là: 12! (cách)

b) Chọn vị trí ở giữa cho 5 quyển sách Toán nên có số cách là 5! (cách)

Chọn vị trí đầu cho sách lý, có số cách là 4! (cách)

Chọn vị trí cuối cho sách văn, có số cách là 3! (cách)

Hoán đổi vị trí đầu và vị trí cuối nên thêm 2! (cách)

Vậy số cách sắp xếp các quyển sách trên theo từng môn và sách Toán nằm ở giữa là:

4!.5!.3!.2! = 34560 (cách)

Lời giải

Từ 1 điểm A nằm ngoài đường tròn (O; R), kẻ 2 tiếp tuyến AB, AC với (O; R) (B và C (ảnh 1)

a) Vì AB, AC là tiếp tuyến của (O) nên \(\widehat {ABO} = \widehat {ACO} = 90^\circ \)

Xét tứ giác ABOC có: \(\widehat {ABO} + \widehat {ACO} = 90^\circ + 90^\circ = 180^\circ \)

Tứ giác ABOC nội tiếp A, B, O, C cùng thuộc đường tròn đường kính OA.

Vì AB, AC là tiếp tuyến của (O) nênAO là đường trung trực của BC.

Do đó AO BC tại H.

b) Xét ∆BCD có: H là trung điểm của BC, O là trung điểm của BD

Suy ra OH là đường trung bình của ∆BCD.

Do đó OH // CD hay OA // CD.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP