Câu hỏi:
13/07/2024 4,700Cho nửa đường tròn (O), đường kính AB. Kẻ 2 tiếp tuyến Ax, By (Ax, By và nửa đường tròn thuộc cùng một mặt phẳng bờ AB). Gọi C là một điểm thuộc tia Ax, kẻ tiếp tuyến CM với nửa đường tròn (M là tiếp điểm). CM cắt By tại D. Gọi I là giao điểm của OC và AM, K là giao điểm của OD và MB.
a) Tính \(\widehat {COD}.\)
b) Tứ giác OIMK là hình gì?
c) Chứng minh AC.BD không đổi khi C di chuyển trên Ax.
d) Chứng minh AB là tiếp tuyến của đường tròn đường kính CD.
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa... kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 70k).
Quảng cáo
Trả lời:
a) Vì AC và CM là tiếp tuyến cắt nhau tại C của (O) nên CO là tia phân giác của góc AOM.
Tương tự OD là tia phân giác của góc BOM.
Mà \(\widehat {MOA} + \widehat {MOB} = 180^\circ \) ⇒ OC ⊥ OD ⇒ \(\widehat {COD} = 90^\circ \)
b) Vì CM, CA là tiếp tuyến của (O) nên OI ⊥ AM hay \(\widehat {OAM} = 90^\circ \)
Tương tự OD ⊥ MB suy ra \(\widehat {OKM} = 90^\circ \)
Mà AB là đường kính của (O) nên AM ⊥ BM hay \(\widehat {IMK} = 90^\circ \)
Ta có: \(\widehat {OAM} = \widehat {OKM} = \widehat {IMK} = 90^\circ \)
Do đó tứ giác OIMK là hình chữ nhật.
c) Ta có CM, CA là tiếp tuyến của (O) nên CA = CM
Tương tự DM = DB.
Mà OC ⊥ OD, OM ⊥ CD suy ra MC.MD = OM2 = R2 hay AC.BD = R2
⇒ AC.BD không đổi khi C di chuyển trên Ax.
d) Gọi E là trung điểm của CD.
⇒ OE là đường trung bình của hình thang ABDC.
⇒ EO // AC ⇒ EO ⊥ AB
Mà ∆COD vuông tại O (do \(\widehat {COD} = 90^\circ \))
⇒ (E, EO) là đường tròn đường kính CD
⇒ AB là tiếp tuyến của đường tròn đường kính CD vì EO ⊥ AB
Đã bán 189
Đã bán 386
Đã bán 1,5k
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Câu 2:
Trên một kệ sách có 5 quyển sách Toán, 4 quyển sách Lí, 3 quyển sách Văn. Các quyển sách đều khác nhau. Hỏi có bao nhiêu cách sắp xếp các quyển sách trên:
a) Một cách tuỳ ý?
b) Theo từng môn và sách Toán nằm ở giữa?
Câu 3:
Cho tam giác đều ABC tâm O, M là điểm bất kỳ trong tam giác. Hình chiếu của M xuống ba cạnh của tam giác lần lượt là D, E, F. Hệ thức giữa các vectơ \(\overrightarrow {MD} ,\overrightarrow {ME} ,\)\[\overrightarrow {MF} ,\] \(\overrightarrow {MO} \) là gì?
Câu 4:
Từ 1 điểm A nằm ngoài đường tròn (O; R), kẻ 2 tiếp tuyến AB, AC với (O; R) (B và C là 2 tiếp điểm).
a) Chứng minh 4 điểm A, B, O, C cùng thuộc 1 đường tròn và AO ⊥ BC tại H.
b) Vẽ đường kính BD. Đường thẳng qua O và vuông góc với AD cắt tia BC tại E. Chứng minh: DC // OA.
Câu 5:
Tìm tọa độ giao điểm của đồ thị hai hàm số y = -x2 và y = x – 2.
Câu 6:
Cho phương trình \(\left( {2\log _3^2x - {{\log }_3}x - 1} \right)\sqrt {{5^x} - m} = 0\) (m là tham số thực). Có tất cả bao nhiêu giá trị nguyên dương của m để phương trình đã cho có đúng hai nghiệm phân biệt?
Câu 7:
Tìm giá trị nhỏ nhất của hàm số \(y = 3x + \frac{4}{{{x^2}}}\) trên khoảng (0; +∞).
5920 câu Trắc nghiệm tổng hợp môn Toán 2023 có đáp án (Phần 1)
80 câu Trắc nghiệm Tích phân có đáp án (Phần 1)
135 câu Bài tập Hình học mặt nón, mặt trụ, mặt cầu cực hay có lời giải (P1)
80 câu Bài tập Hình học Khối đa diện có lời giải chi tiết (P1)
15 câu Trắc nghiệm Số phức có đáp án (Vận dụng)
7 câu Trắc nghiệm Khối đa diện lồi và khối đa diện đều có đáp án (Vận dụng)
140 câu Bài tập Hàm số mũ và Logarit cơ bản, nâng cao cực hay có lời giải chi tiết (P1)
62 câu Trắc nghiệm Khái niệm về khối đa diện (nhận biết)
Hãy Đăng nhập hoặc Tạo tài khoản để gửi bình luận