Câu hỏi:
13/07/2024 2,930Cho nửa đường tròn (O), đường kính AB. Kẻ 2 tiếp tuyến Ax, By (Ax, By và nửa đường tròn thuộc cùng một mặt phẳng bờ AB). Gọi C là một điểm thuộc tia Ax, kẻ tiếp tuyến CM với nửa đường tròn (M là tiếp điểm). CM cắt By tại D. Gọi I là giao điểm của OC và AM, K là giao điểm của OD và MB.
a) Tính \(\widehat {COD}.\)
b) Tứ giác OIMK là hình gì?
c) Chứng minh AC.BD không đổi khi C di chuyển trên Ax.
d) Chứng minh AB là tiếp tuyến của đường tròn đường kính CD.
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
a) Vì AC và CM là tiếp tuyến cắt nhau tại C của (O) nên CO là tia phân giác của góc AOM.
Tương tự OD là tia phân giác của góc BOM.
Mà \(\widehat {MOA} + \widehat {MOB} = 180^\circ \) ⇒ OC ⊥ OD ⇒ \(\widehat {COD} = 90^\circ \)
b) Vì CM, CA là tiếp tuyến của (O) nên OI ⊥ AM hay \(\widehat {OAM} = 90^\circ \)
Tương tự OD ⊥ MB suy ra \(\widehat {OKM} = 90^\circ \)
Mà AB là đường kính của (O) nên AM ⊥ BM hay \(\widehat {IMK} = 90^\circ \)
Ta có: \(\widehat {OAM} = \widehat {OKM} = \widehat {IMK} = 90^\circ \)
Do đó tứ giác OIMK là hình chữ nhật.
c) Ta có CM, CA là tiếp tuyến của (O) nên CA = CM
Tương tự DM = DB.
Mà OC ⊥ OD, OM ⊥ CD suy ra MC.MD = OM2 = R2 hay AC.BD = R2
⇒ AC.BD không đổi khi C di chuyển trên Ax.
d) Gọi E là trung điểm của CD.
⇒ OE là đường trung bình của hình thang ABDC.
⇒ EO // AC ⇒ EO ⊥ AB
Mà ∆COD vuông tại O (do \(\widehat {COD} = 90^\circ \))
⇒ (E, EO) là đường tròn đường kính CD
⇒ AB là tiếp tuyến của đường tròn đường kính CD vì EO ⊥ AB
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Câu 2:
Tìm giá trị nhỏ nhất của hàm số \(y = 3x + \frac{4}{{{x^2}}}\) trên khoảng (0; +∞).
Câu 3:
Cho tam giác đều ABC tâm O, M là điểm bất kỳ trong tam giác. Hình chiếu của M xuống ba cạnh của tam giác lần lượt là D, E, F. Hệ thức giữa các vectơ \(\overrightarrow {MD} ,\overrightarrow {ME} ,\)\[\overrightarrow {MF} ,\] \(\overrightarrow {MO} \) là gì?
Câu 4:
Tính tổng các nghiệm của phương trình \(\log _2^2x - {\log _2}9.{\log _3}x = 3.\)
Câu 5:
Trên một kệ sách có 5 quyển sách Toán, 4 quyển sách Lí, 3 quyển sách Văn. Các quyển sách đều khác nhau. Hỏi có bao nhiêu cách sắp xếp các quyển sách trên:
a) Một cách tuỳ ý?
b) Theo từng môn và sách Toán nằm ở giữa?
Câu 6:
Cho phương trình \(\left( {2\log _3^2x - {{\log }_3}x - 1} \right)\sqrt {{5^x} - m} = 0\) (m là tham số thực). Có tất cả bao nhiêu giá trị nguyên dương của m để phương trình đã cho có đúng hai nghiệm phân biệt?
về câu hỏi!