Câu hỏi:

13/07/2024 5,490

Cho nửa đường tròn (O), đường kính AB. Kẻ 2 tiếp tuyến Ax, By (Ax, By và nửa đường tròn thuộc cùng một mặt phẳng bờ AB). Gọi C là một điểm thuộc tia Ax, kẻ tiếp tuyến CM với nửa đường tròn (M là tiếp điểm). CM cắt By tại D. Gọi I là giao điểm của OC và AM, K là giao điểm của OD và MB.

a) Tính \(\widehat {COD}.\)

b) Tứ giác OIMK là hình gì?

c) Chứng minh AC.BD không đổi khi C di chuyển trên Ax.

d) Chứng minh AB là tiếp tuyến của đường tròn đường kính CD.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Cho nửa đường tròn (O), đường kính AB. Kẻ 2 tiếp tuyến Ax, By (Ax, By và nửa đường tròn (ảnh 1)

a) Vì AC và CM là tiếp tuyến cắt nhau tại C của (O) nên CO là tia phân giác của góc AOM.

Tương tự OD là tia phân giác của góc BOM.

\(\widehat {MOA} + \widehat {MOB} = 180^\circ \) OC OD \(\widehat {COD} = 90^\circ \)

b) Vì CM, CA là tiếp tuyến của (O) nên OI AM hay \(\widehat {OAM} = 90^\circ \)

Tương tự OD MB suy ra \(\widehat {OKM} = 90^\circ \)

Mà AB là đường kính của (O) nên AM BM hay \(\widehat {IMK} = 90^\circ \)

Ta có: \(\widehat {OAM} = \widehat {OKM} = \widehat {IMK} = 90^\circ \)

Do đó tứ giác OIMK là hình chữ nhật.

c) Ta có CM, CA là tiếp tuyến của (O) nên CA = CM

Tương tự DM = DB.

Mà OC OD, OM CD suy ra MC.MD = OM2 = R2 hay AC.BD = R2

AC.BD không đổi khi C di chuyển trên Ax.

d) Gọi E là trung điểm của CD.

OE là đường trung bình của hình thang ABDC.

EO // AC EO AB

Mà ∆COD vuông tại O (do \(\widehat {COD} = 90^\circ \))

(E, EO) là đường tròn đường kính CD

AB là tiếp tuyến của đường tròn đường kính CD vì EO AB

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án đúng là: A

Số tự nhiên có 2 chữ số là: \(C_9^1.C_{10}^1 = 90\) (số).

\(\Omega :\) “Chọn ngẫu nhiên 2 số từ tập hợp S” \({n_\Omega } = C_{90}^2\)

A: “Chọn được 2 số có chữ số hàng đơn vị giống nhau”.

· TH1: Chữ số hàng đơn vị là 0 Có 9 chữ số là: 10; 20; 30; 40; 50; 60; 70; 80; 90.

 Số cách chọn 2 số là: \(C_9^2.\)

Tương tự với các số có chữ số hàng đơn vị là: 1; 2; 3; 4; 5; 6; 7; 8; 9.

 Có tất cả 10 trường hợp giống nhau.

\({n_A} = 10.C_9^2\)

\({P_A} = \frac{{10.C_9^2}}{{C_{90}^2}} = \frac{8}{{89}}.\)

Lời giải

a) Có tất cả 5 + 4 + 3 = 12 quyển sách.

Cách sắp xếp các quyển sách một cách tùy ý là: 12! (cách)

b) Chọn vị trí ở giữa cho 5 quyển sách Toán nên có số cách là 5! (cách)

Chọn vị trí đầu cho sách lý, có số cách là 4! (cách)

Chọn vị trí cuối cho sách văn, có số cách là 3! (cách)

Hoán đổi vị trí đầu và vị trí cuối nên thêm 2! (cách)

Vậy số cách sắp xếp các quyển sách trên theo từng môn và sách Toán nằm ở giữa là:

4!.5!.3!.2! = 34560 (cách)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay