Câu hỏi:
13/07/2024 2,433Cho phương trình \(\left( {2\log _3^2x - {{\log }_3}x - 1} \right)\sqrt {{5^x} - m} = 0\) (m là tham số thực). Có tất cả bao nhiêu giá trị nguyên dương của m để phương trình đã cho có đúng hai nghiệm phân biệt?
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
ĐK: \(\left\{ {\begin{array}{*{20}{c}}{x > 0}\\{{5^x} - m \ge 0}\end{array}} \right.\) ⇔ \(\left\{ {\begin{array}{*{20}{c}}{x > 0}\\{x \ge {{\log }_5}m}\end{array}} \right.\) (*)
Do m nguyên dương nên m ≥ 1 ⇒ log5m ≥ 0.
Ta có: \(\left( {2\log _3^2x - {{\log }_3}x - 1} \right)\sqrt {{5^x} - m} = 0\)
⇔ \(\left[ {\begin{array}{*{20}{c}}{{{\log }_3}x = 1}\\{{{\log }_3}x = - \frac{1}{2}}\\{{5^x} = m}\end{array}} \right.\) ⇔ \(\left[ {\begin{array}{*{20}{c}}{x = 3}\\{x = \frac{1}{{\sqrt 3 }}}\\{x = {{\log }_5}m}\end{array}} \right.\)
TH1: m = 1 thì (*) là \(\left\{ {\begin{array}{*{20}{c}}{x > 0}\\{x \ge 0}\end{array}} \right.\) ⇔ x > 0.
Mà m = 1 ⇒ x = log5m = 0 (KTM) nên phương trình đã cho chỉ có hai nghiệm x1 = 3 và \({x_2} = \frac{1}{{\sqrt 3 }}.\)
TH2: m > 1 thì (*) là \(\left\{ {\begin{array}{*{20}{c}}{x > 0}\\{x \ge {{\log }_5}m}\end{array}} \right.\) ⇔ x ≥ log5m.
Do đó phương trình đã cho chắc chắn có nghiệm x1 = log5m.
Do đó để phương trình có hai nghiệm phân biệt thì nó chỉ có thể nhận thêm một trong hai nghiệm x = 3 hoặc \(x = \frac{1}{{\sqrt 3 }}.\)
+) Nếu \(\frac{1}{{\sqrt 3 }} > {\log _5}m\) ⇒ 3 > log5m nên cả hai nghiệm 3 và \(\frac{1}{{\sqrt 3 }}\) đều thỏa mãn ĐK nên phương trình đã cho có 3 nghiệm (loại).
+) Nếu \(\frac{1}{{\sqrt 3 }} = {\log _5}m\) ⇔ \(m = {5^{\frac{1}{{\sqrt 3 }}}} \notin \mathbb{Z}\) nên không xét trường hợp này.
+) Nếu \(\frac{1}{{\sqrt 3 }} < {\log _5}m\) ⇔ \(m > {5^{\frac{1}{{\sqrt 3 }}}}\) thì để phương trình đã cho có hai nghiệm phân biệt thì nghiệm x = 3 phải thỏa mãn 3 > log5m ⇔ m < 53 = 125.
Kết hợp \(m > {5^{\frac{1}{{\sqrt 3 }}}}\) ta được \({5^{\frac{1}{{\sqrt 3 }}}} < m < 125.\)
Mà m ∈ ℤ nên m ∈ {3; 4;...; 124}.
Vậy m ∈ {1; 3; 4;...; 124} nên có 123 giá trị m thỏa mãn.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Câu 2:
Tìm giá trị nhỏ nhất của hàm số \(y = 3x + \frac{4}{{{x^2}}}\) trên khoảng (0; +∞).
Câu 3:
Cho tam giác đều ABC tâm O, M là điểm bất kỳ trong tam giác. Hình chiếu của M xuống ba cạnh của tam giác lần lượt là D, E, F. Hệ thức giữa các vectơ \(\overrightarrow {MD} ,\overrightarrow {ME} ,\)\[\overrightarrow {MF} ,\] \(\overrightarrow {MO} \) là gì?
Câu 4:
Cho nửa đường tròn (O), đường kính AB. Kẻ 2 tiếp tuyến Ax, By (Ax, By và nửa đường tròn thuộc cùng một mặt phẳng bờ AB). Gọi C là một điểm thuộc tia Ax, kẻ tiếp tuyến CM với nửa đường tròn (M là tiếp điểm). CM cắt By tại D. Gọi I là giao điểm của OC và AM, K là giao điểm của OD và MB.
a) Tính \(\widehat {COD}.\)
b) Tứ giác OIMK là hình gì?
c) Chứng minh AC.BD không đổi khi C di chuyển trên Ax.
d) Chứng minh AB là tiếp tuyến của đường tròn đường kính CD.
Câu 5:
Tính tổng các nghiệm của phương trình \(\log _2^2x - {\log _2}9.{\log _3}x = 3.\)
Câu 6:
Trên một kệ sách có 5 quyển sách Toán, 4 quyển sách Lí, 3 quyển sách Văn. Các quyển sách đều khác nhau. Hỏi có bao nhiêu cách sắp xếp các quyển sách trên:
a) Một cách tuỳ ý?
b) Theo từng môn và sách Toán nằm ở giữa?
về câu hỏi!