Câu hỏi:
16/08/2023 2,071Tìm tập hợp các giá trị của tham số thực m để phương trình 6x + (3 – m) . 2x – m = 0 có nghiệm thuộc khoảng (0; 1).
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Đáp án đúng là: C
Ta có:
6x + (3 – m) . 2x – m = 0
⇔ 6x + 3 . 2x – m . 2x – m = 0
\( \Leftrightarrow m = \frac{{{6^x} + {{3.2}^x}}}{{1 + {2^x}}}\)
Xét hàm số \(\frac{{{6^x} + {{3.2}^x}}}{{1 + {2^x}}}\) liên tục trên (0; 1)
Ta có: \(f'\left( x \right) = \frac{{{{12}^x}.\ln 3 + {6^x}.\ln 6 + {{3.2}^x}.\ln 2}}{{{{\left( {1 + {2^x}} \right)}^2}}} > 0;\forall x \in \left( {0;1} \right)\)
Suy ra hàm số \(\frac{{{6^x} + {{3.2}^x}}}{{1 + {2^x}}}\) đồng biến trên (0; 1)
Do đó phương trình 6x + (3 – m) . 2x – m = 0 có nghiệm thuộc khoảng (0; 1) khi và chỉ khi f(0) < m < f(1) ⇔ 2 < m < 4
Vậy ta chọn đáp án C.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Với a, b là các số thực dương tùy ý thỏa mãn log3a – 2log9b = 2, mệnh đề nào dưới đây đúng?
Câu 2:
Cho hình thang cân ABCD, có đáy nhỏ và đường cao cùng bẳng 2a và \(\widehat {ABC} = 45^\circ \). Tính \(\left| {\overrightarrow {CB} - \overrightarrow {A{\rm{D}}} + \overrightarrow {AC} } \right|\).
Câu 5:
Tìm số nguyên a, b biết \(\frac{a}{7} - \frac{1}{2} = \frac{1}{{b + 3}}\).
về câu hỏi!