Câu hỏi:

12/07/2024 2,097

Cho hình chóp S.ABC. Gọi M, N lần lượt là trung điểm của SA, BC và P là điểm nằm trên cạnh AB sao cho \(AP = \frac{1}{3}AB.\) Gọi Q là giao điểm của SC và (MNP). Tính tỉ số \(\frac{{SQ}}{{SC}}.\)

Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).

Tổng ôn toán Tổng ôn lý Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Cho hình chóp S.ABC. Gọi M, N lần lượt là trung điểm của SA, BC và P là điểm  (ảnh 1)

Do \(\frac{{AP}}{{AB}} = \frac{1}{3},\) \(\frac{{CN}}{{CB}} = \frac{1}{2}\) NP không song song với AC.

Trong (ABC), gọi I = NP ∩ AC.

Trong (SAC), gọi M = IQ ∩ SA.

Do \(IM \subset \left( {MNP} \right)\) Q = SC ∩ (MNP).

· Xét ∆IBC:

Cho hình chóp S.ABC. Gọi M, N lần lượt là trung điểm của SA, BC và P là điểm  (ảnh 2)

Kẻ NJ song song AB (J IC).

Do N là trung điểm của BC J là trung điểm của AC AC = 2AJ.

Ta có:

\(\left\{ {\begin{array}{*{20}{c}}{AP\parallel NJ}\\{\frac{{IP}}{{NP}} = 2}\end{array}} \right.\) \(\frac{{IA}}{{AJ}} = 2\) AI = 2AJ IA = AC = (2AJ)

A là trung điểm của IC.

· Xét ∆SIC:

Cho hình chóp S.ABC. Gọi M, N lần lượt là trung điểm của SA, BC và P là điểm  (ảnh 3)

Kẻ AK song song IQ (K SC).

Do A là trung điểm của IC  K là trung điểm của QC 

QK = KC

Ta có: MQ // AK, M là trung điểm của SA  Q là trung điểm của SK

SQ = QK SQ = QK = KC \(SQ = \frac{1}{3}SC\) \(\frac{{SQ}}{{SC}} = \frac{1}{3}.\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Biết phương trình \(\log _2^2x - 2{\log _2}\left( {2x} \right) - 1 = 0\) có hai nghiệm x1, x2. Tính x1x2.

Xem đáp án » 12/07/2024 5,509

Câu 2:

Cho ngũ giác ABCDE. Gọi M, N, P, Q lần lượt là trung điểm các cạnh AB, BC, CD, DE. Gọi I, J lần lượt là trung điểm MP, NQ. Chứng minh IJ // AE và AE = 4IJ.

Cho ngũ giác ABCDE. Gọi M, N, P, Q lần lượt là trung điểm các cạnh AB, BC, CD (ảnh 1)

Xem đáp án » 12/07/2024 3,087

Câu 3:

Có 5 cái bánh, chia đều cho 8 em. Hỏi mỗi em được bao nhiêu phần cái bánh?

Xem đáp án » 12/07/2024 2,305

Câu 4:

Cho hình vuông ABCD cạnh a. Tính \(\left( {\overrightarrow {AB} + \overrightarrow {AD} } \right).\left( {\overrightarrow {BC} + \overrightarrow {BD} } \right).\)

Xem đáp án » 18/08/2023 2,109

Câu 5:

Cho tứ diện ABCD. Gọi H, K lần lượt là trung điểm của các cạnh AC, BC. Trong tam giác BCD lấy điểm M sao cho hai đường thẳng KM và CD cắt nhau tại I. Tìm thiết diện của tứ diện với (HKM) trong hai trường hợp:

a) I nằm ngoài đoạn CD.

b) I nằm trong đoạn CD.

Xem đáp án » 12/07/2024 2,021

Câu 6:

Cho hình chóp tam giác S.ABC, gọi M, N lần lượt là trung điểm của SB và SC. Tính tỉ số thể tích của khối chóp S.AMN và S.ABC.

Xem đáp án » 18/08/2023 1,807

Bình luận


Bình luận
Đăng ký gói thi VIP

VIP 1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 2 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 3 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 4 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

Vietjack official store