Câu hỏi:
18/08/2023 6,030
Cho hình vuông ABCD cạnh a. Tính \(\left( {\overrightarrow {AB} + \overrightarrow {AD} } \right).\left( {\overrightarrow {BC} + \overrightarrow {BD} } \right).\)
Cho hình vuông ABCD cạnh a. Tính \(\left( {\overrightarrow {AB} + \overrightarrow {AD} } \right).\left( {\overrightarrow {BC} + \overrightarrow {BD} } \right).\)
Quảng cáo
Trả lời:
Đáp án đúng là: B
Vì ABCD là hình vuông nên ta có \[\left( {\overrightarrow {AC} ,\,\,\overrightarrow {BC} } \right) = 45^\circ ,\,\,\left( {\overrightarrow {AC} ,\,\,\overrightarrow {BD} } \right) = 90^\circ .\]
Ta có: \(\left( {\overrightarrow {AB} + \overrightarrow {AD} } \right).\left( {\overrightarrow {BC} + \overrightarrow {BD} } \right) = \overrightarrow {AC} .\left( {\overrightarrow {BC} + \overrightarrow {BD} } \right)\)
\(\overrightarrow {AC} \,.\,\overrightarrow {BC} + \overrightarrow {AC} \,.\,\overrightarrow {BD} = \overrightarrow {AC} \,.\,\overrightarrow {BC} = a\,.\,a\sqrt 2 \,.\,\cos 45^\circ = {a^2}.\)
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
ĐK: x > 0.
\(\log _2^2x - 2{\log _2}\left( {2x} \right) - 1 = 0\) ⇔ \(\log _2^2x - 2{\log _2}2 - 2{\log _2}x - 1 = 0\)
⇔ \(\log _2^2x - 2{\log _2}x - 3 = 0\) (*)
Đặt log2x = t. Khi đó ta có:
(*) ⇔ \({t^2} - 2t - 3 = 0\) ⇔ (t + 1)(t – 3) = 0
⇔ \(\left[ {\begin{array}{*{20}{c}}{t + 1 = 0}\\{t - 3 = 0}\end{array}} \right.\) ⇔ \(\left[ {\begin{array}{*{20}{c}}{t = - 1}\\{t = 3}\end{array}} \right.\) ⇔ \(\left[ {\begin{array}{*{20}{c}}{{{\log }_2}x = - 1}\\{{{\log }_2}x = 3}\end{array}} \right.\)
⇔ \(\left[ {\begin{array}{*{20}{c}}{x = {2^{ - 1}} = \frac{1}{2}\left( {tm} \right)}\\{x = {2^3} = 8\left( {tm} \right)}\end{array}} \right.\)
⇒ \({x_1}{x_2} = \frac{1}{2}.8 = 4.\)
Lời giải
Ta có: \(2\overrightarrow {IJ} = \overrightarrow {IQ} + \overrightarrow {IN} = \overrightarrow {IM} + \overrightarrow {MQ} + \overrightarrow {IP} + \overrightarrow {PN} = \overrightarrow {MQ} + \overrightarrow {PN} \)
\( = \frac{1}{2}\left( {\overrightarrow {AE} + \overrightarrow {BD} } \right) + \frac{1}{2}\overrightarrow {DB} = \frac{1}{2}\overrightarrow {AE} \)
Do đó: \(\overrightarrow {IJ} = \frac{1}{4}\overrightarrow {AE} \) ⇒ \(4\overrightarrow {IJ} = \overrightarrow {AE} .\)
Vậy IJ // AE và 4IJ = AE.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.