Câu hỏi:
12/07/2024 2,825Cho tứ diện ABCD. Gọi H, K lần lượt là trung điểm của các cạnh AC, BC. Trong tam giác BCD lấy điểm M sao cho hai đường thẳng KM và CD cắt nhau tại I. Tìm thiết diện của tứ diện với (HKM) trong hai trường hợp:
a) I nằm ngoài đoạn CD.
b) I nằm trong đoạn CD.
Quảng cáo
Trả lời:
a) Giả sử D nằm giữa C và I.
+ Bước 1: Giao tuyến có sẵn HK.
+ Bước 2: (HKM) ≡ (HKI).
Trong (BCD) gọi KI ∩ BD = {E}, trong (ACD) gọi HI ∩ AD = {F}.
+ Bước 3: Lúc này mặt (HKM) đã khép kín và cắt tất cả các mặt của hình chóp lần lượt theo các giao tuyến sau:
(HKM) ∩ (ABC) = HK
(HKM) ∩ (BCD) = KE
(HKM) ∩ (ABD) = EF
(HKM) ∩ (ACD) = FH
+ Bước 4: Thiết diện của hình chóp khi cắt bởi (HKM) là tứ giác HKEF.
b) I nằm trong đoạn CD.
Dễ thấy (HKM) ≡ (HKI) và (HKM) đã khép kín và cắt tất cả các mặt của hình chóp lần lượt theo các giao tuyến sau:
• (HKM) ∩ (ABC) = HK
• (HKM) ∩ (BCD) = KI
• (HKM) ∩ (ACD) = IH
Vậy thiết diện của hình chóp khi cắt bởi (HKM) là tam giác HKM.
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
ĐK: x > 0.
\(\log _2^2x - 2{\log _2}\left( {2x} \right) - 1 = 0\) ⇔ \(\log _2^2x - 2{\log _2}2 - 2{\log _2}x - 1 = 0\)
⇔ \(\log _2^2x - 2{\log _2}x - 3 = 0\) (*)
Đặt log2x = t. Khi đó ta có:
(*) ⇔ \({t^2} - 2t - 3 = 0\) ⇔ (t + 1)(t – 3) = 0
⇔ \(\left[ {\begin{array}{*{20}{c}}{t + 1 = 0}\\{t - 3 = 0}\end{array}} \right.\) ⇔ \(\left[ {\begin{array}{*{20}{c}}{t = - 1}\\{t = 3}\end{array}} \right.\) ⇔ \(\left[ {\begin{array}{*{20}{c}}{{{\log }_2}x = - 1}\\{{{\log }_2}x = 3}\end{array}} \right.\)
⇔ \(\left[ {\begin{array}{*{20}{c}}{x = {2^{ - 1}} = \frac{1}{2}\left( {tm} \right)}\\{x = {2^3} = 8\left( {tm} \right)}\end{array}} \right.\)
⇒ \({x_1}{x_2} = \frac{1}{2}.8 = 4.\)
Lời giải
Ta có: \(2\overrightarrow {IJ} = \overrightarrow {IQ} + \overrightarrow {IN} = \overrightarrow {IM} + \overrightarrow {MQ} + \overrightarrow {IP} + \overrightarrow {PN} = \overrightarrow {MQ} + \overrightarrow {PN} \)
\( = \frac{1}{2}\left( {\overrightarrow {AE} + \overrightarrow {BD} } \right) + \frac{1}{2}\overrightarrow {DB} = \frac{1}{2}\overrightarrow {AE} \)
Do đó: \(\overrightarrow {IJ} = \frac{1}{4}\overrightarrow {AE} \) ⇒ \(4\overrightarrow {IJ} = \overrightarrow {AE} .\)
Vậy IJ // AE và 4IJ = AE.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
5920 câu Trắc nghiệm tổng hợp môn Toán 2023 có đáp án (Phần 1)
79 câu Chuyên đề Toán 12 Bài 2 Dạng 1: Xác định vectơ pháp tuyến và viết phương trình mặt phẳng có đáp án
87 câu Chuyên đề Toán 12 Bài 3 Dạng 1: Xác định vectơ pháp tuyến và viết phương trình mặt phẳng có đáp án
56 câu Chuyên đề Toán 12 Bài 2: Lôgarit có đáp án
135 câu Bài tập Hình học mặt nón, mặt trụ, mặt cầu cực hay có lời giải (P1)
80 câu Trắc nghiệm Tích phân có đáp án (Phần 1)
15 câu Trắc nghiệm Số phức có đáp án (Vận dụng)
7881 câu Trắc nghiệm tổng hợp môn Toán 2023 cực hay có đáp án ( Phần 1)