Câu hỏi:
18/08/2023 1,320Một vận động viên bắn súng, bắn ba viên đạn. Xác suất để trúng cả ba viên vòng 10 là 0,0008; xác suất đề một viên trúng vòng 8 là 0,15; xác suất để một viên trúng vòng dưới 8 là 0,4. Biết rằng các lần bắn là độc lập với nhau. Xác suất để vận động viên đó đạt ít nhất 28 điểm có giá trị gần bằng nhất với số nào sau đây?
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Xác suất để một viên trúng vòng 10 là \(\sqrt[3]{{0,0008}} \approx 0,0928.\)
Xác suất để một viên trúng vòng 9 là 1 − 0,4 − 0,0928 − 0,15 = 0,3572.
Các trường hờp xảy ra để thỏa mãn yêu cầu bài toán:
· Điểm ba lần bắn là 28 điểm, có 2 trường hợp: hai viên vòng 9 và một viên vòng 10 hoặc hai viên vòng 10 và một viên vòng 8 .
Xác suất trong trường hợp này bằng:
\({P_1} = C_3^2.{\left( {0,3572} \right)^2}.0,0928 + C_3^2.{\left( {0,0928} \right)^2}.0,15 \approx 0,0394.\)
· Điểm ba lần bắn là 29 điểm, có 1 trường hợp: hai viên vòng 10 và một viên vòng 9.
Xác suất trường hợp này bằng:
\({P_2} = C_3^2.{\left( {0,0928} \right)^2}.0,3572 \approx 0,0092.\)
· Điểm ba lần bắn là 30 điểm, có 1 trường hợp là cả ba viên vòng 10 : xác suất bằng 0,0008.
Vậy xác suất cần tìm bằng: P1 + P2 + 0,0008 = 0,0494.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Biết phương trình \(\log _2^2x - 2{\log _2}\left( {2x} \right) - 1 = 0\) có hai nghiệm x1, x2. Tính x1x2.
Câu 2:
Cho ngũ giác ABCDE. Gọi M, N, P, Q lần lượt là trung điểm các cạnh AB, BC, CD, DE. Gọi I, J lần lượt là trung điểm MP, NQ. Chứng minh IJ // AE và AE = 4IJ.
Câu 3:
Có 5 cái bánh, chia đều cho 8 em. Hỏi mỗi em được bao nhiêu phần cái bánh?
Câu 4:
Cho hình vuông ABCD cạnh a. Tính \(\left( {\overrightarrow {AB} + \overrightarrow {AD} } \right).\left( {\overrightarrow {BC} + \overrightarrow {BD} } \right).\)
Câu 5:
Cho hình chóp S.ABC. Gọi M, N lần lượt là trung điểm của SA, BC và P là điểm nằm trên cạnh AB sao cho \(AP = \frac{1}{3}AB.\) Gọi Q là giao điểm của SC và (MNP). Tính tỉ số \(\frac{{SQ}}{{SC}}.\)
Câu 6:
Cho tứ diện ABCD. Gọi H, K lần lượt là trung điểm của các cạnh AC, BC. Trong tam giác BCD lấy điểm M sao cho hai đường thẳng KM và CD cắt nhau tại I. Tìm thiết diện của tứ diện với (HKM) trong hai trường hợp:
a) I nằm ngoài đoạn CD.
b) I nằm trong đoạn CD.
Câu 7:
Cho hình chóp tam giác S.ABC, gọi M, N lần lượt là trung điểm của SB và SC. Tính tỉ số thể tích của khối chóp S.AMN và S.ABC.
về câu hỏi!