Một vận động viên bắn súng, bắn ba viên đạn. Xác suất để trúng cả ba viên vòng 10 là 0,0008; xác suất đề một viên trúng vòng 8 là 0,15; xác suất để một viên trúng vòng dưới 8 là 0,4. Biết rằng các lần bắn là độc lập với nhau. Xác suất để vận động viên đó đạt ít nhất 28 điểm có giá trị gần bằng nhất với số nào sau đây?
Một vận động viên bắn súng, bắn ba viên đạn. Xác suất để trúng cả ba viên vòng 10 là 0,0008; xác suất đề một viên trúng vòng 8 là 0,15; xác suất để một viên trúng vòng dưới 8 là 0,4. Biết rằng các lần bắn là độc lập với nhau. Xác suất để vận động viên đó đạt ít nhất 28 điểm có giá trị gần bằng nhất với số nào sau đây?
Quảng cáo
Trả lời:
Đáp án đúng là: A
Xác suất để một viên trúng vòng 10 là \(\sqrt[3]{{0,0008}} \approx 0,0928.\)
Xác suất để một viên trúng vòng 9 là 1 − 0,4 − 0,0928 − 0,15 = 0,3572.
Các trường hờp xảy ra để thỏa mãn yêu cầu bài toán:
· Điểm ba lần bắn là 28 điểm, có 2 trường hợp: hai viên vòng 9 và một viên vòng 10 hoặc hai viên vòng 10 và một viên vòng 8 .
Xác suất trong trường hợp này bằng:
\({P_1} = C_3^2.{\left( {0,3572} \right)^2}.0,0928 + C_3^2.{\left( {0,0928} \right)^2}.0,15 \approx 0,0394.\)
· Điểm ba lần bắn là 29 điểm, có 1 trường hợp: hai viên vòng 10 và một viên vòng 9.
Xác suất trường hợp này bằng:
\({P_2} = C_3^2.{\left( {0,0928} \right)^2}.0,3572 \approx 0,0092.\)
· Điểm ba lần bắn là 30 điểm, có 1 trường hợp là cả ba viên vòng 10 : xác suất bằng 0,0008.
Vậy xác suất cần tìm bằng: P1 + P2 + 0,0008 = 0,0494.
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
ĐK: x > 0.
\(\log _2^2x - 2{\log _2}\left( {2x} \right) - 1 = 0\) ⇔ \(\log _2^2x - 2{\log _2}2 - 2{\log _2}x - 1 = 0\)
⇔ \(\log _2^2x - 2{\log _2}x - 3 = 0\) (*)
Đặt log2x = t. Khi đó ta có:
(*) ⇔ \({t^2} - 2t - 3 = 0\) ⇔ (t + 1)(t – 3) = 0
⇔ \(\left[ {\begin{array}{*{20}{c}}{t + 1 = 0}\\{t - 3 = 0}\end{array}} \right.\) ⇔ \(\left[ {\begin{array}{*{20}{c}}{t = - 1}\\{t = 3}\end{array}} \right.\) ⇔ \(\left[ {\begin{array}{*{20}{c}}{{{\log }_2}x = - 1}\\{{{\log }_2}x = 3}\end{array}} \right.\)
⇔ \(\left[ {\begin{array}{*{20}{c}}{x = {2^{ - 1}} = \frac{1}{2}\left( {tm} \right)}\\{x = {2^3} = 8\left( {tm} \right)}\end{array}} \right.\)
⇒ \({x_1}{x_2} = \frac{1}{2}.8 = 4.\)
Lời giải
Ta có: \(2\overrightarrow {IJ} = \overrightarrow {IQ} + \overrightarrow {IN} = \overrightarrow {IM} + \overrightarrow {MQ} + \overrightarrow {IP} + \overrightarrow {PN} = \overrightarrow {MQ} + \overrightarrow {PN} \)
\( = \frac{1}{2}\left( {\overrightarrow {AE} + \overrightarrow {BD} } \right) + \frac{1}{2}\overrightarrow {DB} = \frac{1}{2}\overrightarrow {AE} \)
Do đó: \(\overrightarrow {IJ} = \frac{1}{4}\overrightarrow {AE} \) ⇒ \(4\overrightarrow {IJ} = \overrightarrow {AE} .\)
Vậy IJ // AE và 4IJ = AE.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.