Câu hỏi:

13/07/2024 8,236

Chứng minh các đẳng thức sau:

a) cos4 x – sin4 x = 2 cos2 x – 1;

b) tan2 x – sin2 x = tan2 x . sin2 x;

c) (sin x + cos x)2 + (sin x – cos x)2 = 2. 

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Lời giải

a) Ta có VT = cos4 x – sin4 x = (cos2 x – sin2 x)(cos2 x + sin2 x) = cos2 x – sin2 x

                     = cos2 x – (1 – cos2 x) = 2 cos2 x – 1 = VP.             

b) Ta có

VT = tan2 x – sin2 x = \(\frac{{{{\sin }^2}x}}{{{{\cos }^2}x}} - {\sin ^2}x\)\( = \frac{{{{\sin }^2}x - {{\sin }^2}x{{\cos }^2}x}}{{{{\cos }^2}x}}\)\( = \frac{{{{\sin }^2}x\left( {1 - {{\cos }^2}x} \right)}}{{{{\cos }^2}x}}\)

\( = \frac{{{{\sin }^2}x}}{{{{\cos }^2}x}}.{\sin ^2}x\) = tan2 x . sin² x = VP.                                                    

c) Ta có

VT = (sin x + cos x)2 + (sin x – cos x)²

= sin2 x + 2sin x cos x + cos2 x + sin2 x – 2sin x cos x + cos2 x

= 2 sin2 x + 2 cos2 x = 2(sin2 x + cos2 x) = 2 . 1 = 2 = VP.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Lời giải

Một giờ, kim phút quét được một góc lượng giác 2π; kim giờ quét được một góc \(\frac{\pi }{6}\).

Hiệu vận tốc giữa kim phút và kim giờ là \(2\pi - \frac{\pi }{6} = \frac{{11\pi }}{6}\).

Vào lúc 4 giờ hai kim tạo với nhau một góc là \(\frac{{2\pi }}{3}\).

Khoảng thời gian ít nhất để hai kim vuông góc với nhau là

\(\left( {\frac{{2\pi }}{3} - \frac{\pi }{2}} \right):\frac{{11\pi }}{6} = \frac{1}{{11}}\) (giờ).

Vậy sau \(\frac{1}{{11}}\) (giờ) hai kim sẽ vuông góc với nhau.

Tổng quãng đường hai đầu mút kim đi được là

l = R .α = \[6.\frac{1}{{11}}.\frac{\pi }{6} + 11.\frac{1}{{11}}.2\pi = \frac{{23\pi }}{{11}}\] (cm).

Lời giải

Lời giải

a) Trong 1 giây, bánh xe quay được \(\frac{{12}}{6}\) = 2 vòng, tức là quay được một góc 4π (rad) hay 720°.

b) Bán kính xe đạp là: 860 : 2 = 430 (mm).

Trong 1 phút, quãng đường mà người đi xe đã đi được là:

l = 430 . 4π . 60 = 103 200π (mm).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay