Câu hỏi:

13/07/2024 5,467

Cho góc lượng giác (Ou, Ov) có số đo α mà \(\widehat {uOv}\) là góc tù. Mệnh đề nào sau đây đúng?

A. Có số nguyên k để \(\frac{\pi }{2} + k2\pi < \alpha < \frac{{3\pi }}{2} + k2\pi \).

B. \( - \pi < \alpha < - \frac{\pi }{2}\).

C. \( - \frac{\pi }{2} < \alpha \le \frac{{3\pi }}{2}\).

D. \(\frac{\pi }{2} < \alpha < \pi \).

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Lời giải

Đáp án đúng là: A

Vì có vô số góc lượng giác tia đầu Ou, tia cuối Ov nên ta loại trừ đáp án B, C, D (do chưa thể xác định được khoảng cụ thể của góc α.

Mà \(\widehat {uOv}\) là góc tù nên \(\frac{\pi }{2} < \widehat {uOv} < \frac{{3\pi }}{2}\).

Vậy tồn tại số nguyên k để \(\frac{\pi }{2} + k2\pi < \alpha < \frac{{3\pi }}{2} + k2\pi \).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Lời giải

Đáp án đúng là: C

Ta có \(2\cos x = \sqrt 3 \)\( \Leftrightarrow \cos x = \frac{{\sqrt 3 }}{2}\)\( \Leftrightarrow \cos x = \cos \frac{\pi }{6}\)\( \Leftrightarrow x = \pm \frac{\pi }{6} + k2\pi \,\,\,\left( {k \in \mathbb{Z}} \right)\).

Vì \(x \in \left[ {0;\,\frac{{5\pi }}{2}} \right]\) nên:

+ Với \(x = \frac{\pi }{6} + k2\pi \,\,\,\left( {k \in \mathbb{Z}} \right)\) thì \(0 \le \frac{\pi }{6} + k2\pi \le \frac{{5\pi }}{2} \Leftrightarrow - \frac{1}{{12}} \le k \le \frac{7}{6}\) , mà k ℤ, từ đó suy ra k {0; 1}.

+ Với \(x = \frac{\pi }{6} + k2\pi \,\,\,\left( {k \in \mathbb{Z}} \right)\) thì \(0 \le - \frac{\pi }{6} + k2\pi \le \frac{{5\pi }}{2} \Leftrightarrow \frac{1}{{12}} \le k \le \frac{4}{3}\), mà k ℤ, từ đó suy ra k = 1.

Vậy phương trình \(2\cos x = \sqrt 3 \) có 3 nghiệm trên đoạn \(\left[ {0;\,\frac{{5\pi }}{2}} \right]\).

Lời giải

Lời giải

Đáp án đúng là: D

Công thức nhân đôi:

sin 2a = 2sin a cos a.

cos 2a = cos2 a – sin2 a = 1 – 2sin2 a.

tan 2a = \(\frac{{2\tan a}}{{1 - {{\tan }^2}a}}\).

Vậy đáp án D sai.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP