Câu hỏi:
13/07/2024 4,585
Khẳng định nào sau đây đúng?
A. Hàm số y = cos x nghịch biến trên khoảng (– π; 0) và đồng biến khoảng (0; π).
B. Hàm số y = cos x đồng biến trên các khoảng (– π; 0) và (0; π).
C. Hàm số y = cos x nghịch biến trên các khoảng (– π; 0) và (0; π).
D. Hàm số y = cos x đồng biến trên khoảng (– π; 0) và nghịch biến trên khoảng (0; π).
Khẳng định nào sau đây đúng?
A. Hàm số y = cos x nghịch biến trên khoảng (– π; 0) và đồng biến khoảng (0; π).
B. Hàm số y = cos x đồng biến trên các khoảng (– π; 0) và (0; π).
C. Hàm số y = cos x nghịch biến trên các khoảng (– π; 0) và (0; π).
D. Hàm số y = cos x đồng biến trên khoảng (– π; 0) và nghịch biến trên khoảng (0; π).
Câu hỏi trong đề: Giải SBT Toán 11 KNTT Bài tập cuối chương I có đáp án !!
Quảng cáo
Trả lời:
Lời giải
Đáp án đúng là: D
Hàm số y = cos x đồng biến trên mỗi khoảng (– π + k2π; k2π) và nghịch biến trên mỗi khoảng (k2π; π + k2π), k ∈ ℤ.
Do đó, hàm số y = cos x đồng biến trên khoảng (– π; 0) và nghịch biến trên khoảng (0; π).
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Trọng tâm Sử, Địa, GD KTPL 11 cho cả 3 bộ Kết nối, Chân trời, Cánh diều VietJack - Sách 2025 ( 38.000₫ )
- Trọng tâm Hóa học 11 dùng cho cả 3 bộ sách Kết nối, Cánh diều, Chân trời sáng tạo VietJack - Sách 2025 ( 58.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Lời giải
Đáp án đúng là: C
Ta có \(2\cos x = \sqrt 3 \)\( \Leftrightarrow \cos x = \frac{{\sqrt 3 }}{2}\)\( \Leftrightarrow \cos x = \cos \frac{\pi }{6}\)\( \Leftrightarrow x = \pm \frac{\pi }{6} + k2\pi \,\,\,\left( {k \in \mathbb{Z}} \right)\).
Vì \(x \in \left[ {0;\,\frac{{5\pi }}{2}} \right]\) nên:
+ Với \(x = \frac{\pi }{6} + k2\pi \,\,\,\left( {k \in \mathbb{Z}} \right)\) thì \(0 \le \frac{\pi }{6} + k2\pi \le \frac{{5\pi }}{2} \Leftrightarrow - \frac{1}{{12}} \le k \le \frac{7}{6}\) , mà k ∈ ℤ, từ đó suy ra k ∈ {0; 1}.
+ Với \(x = \frac{\pi }{6} + k2\pi \,\,\,\left( {k \in \mathbb{Z}} \right)\) thì \(0 \le - \frac{\pi }{6} + k2\pi \le \frac{{5\pi }}{2} \Leftrightarrow \frac{1}{{12}} \le k \le \frac{4}{3}\), mà k ∈ ℤ, từ đó suy ra k = 1.
Vậy phương trình \(2\cos x = \sqrt 3 \) có 3 nghiệm trên đoạn \(\left[ {0;\,\frac{{5\pi }}{2}} \right]\).
Lời giải
Lời giải
Đáp án đúng là: D
Công thức nhân đôi:
sin 2a = 2sin a cos a.
cos 2a = cos2 a – sin2 a = 1 – 2sin2 a.
tan 2a = \(\frac{{2\tan a}}{{1 - {{\tan }^2}a}}\).
Vậy đáp án D sai.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.