Câu hỏi:
13/07/2024 5,175Tìm tập xác định của các hàm số sau:
a) \(y = \cos \frac{{2x}}{{x - 1}}\);
b) \(y = \frac{1}{{\cos x - \cos 3x}}\);
c) \(y = \frac{1}{{\cos x + \sin 2x}}\);
d) y = tan x + cot x.
Sách mới 2k7: 30 đề đánh giá năng lực DHQG Hà Nội, Tp. Hồ Chí Minh, BKHN 2025 mới nhất (600 trang - chỉ từ 140k).
Quảng cáo
Trả lời:
Lời giải
a) Biểu thức \(\cos \frac{{2x}}{{x - 1}}\) có nghĩa khi x – 1 ≠ 0 hay x ≠ 1.
Vậy tập xác định của hàm số là \(D = \mathbb{R}\backslash \left\{ 1 \right\}\).
b) Biểu thức \(\frac{1}{{\cos x - \cos 3x}}\) có nghĩa khi cos x – cos 3x ≠ 0 hay cos x ≠ cos 3x
⇔ 3x ≠ ± x + k2π (k ∈ ℤ) ⇔ x ≠ k\(\frac{\pi }{2}\) (k ∈ ℤ).
Vậy tập xác định của hàm số là \(D = \mathbb{R}\backslash \left\{ {k\frac{\pi }{2}|k \in \mathbb{Z}} \right\}\).
c) Biểu thức \(\frac{1}{{\cos x + \sin 2x}}\) có nghĩa khi cos x + sin 2x ≠ 0 ⇔ cos x ≠ – sin 2x
⇔ cos x ≠ sin (– 2x) \( \Leftrightarrow \cos x \ne \cos \left( {\frac{\pi }{2} - \left( { - 2x} \right)} \right)\) \( \Leftrightarrow \cos x \ne \cos \left( {\frac{\pi }{2} + 2x} \right)\)
\[ \Leftrightarrow \left\{ \begin{array}{l}x \ne \frac{\pi }{2} + 2x + k2\pi \\x \ne - \left( {\frac{\pi }{2} + 2x} \right) + k2\pi \end{array} \right.\,\,\left( {k \in \mathbb{Z}} \right)\]\( \Leftrightarrow \left\{ \begin{array}{l}x \ne - \frac{\pi }{2} + k2\pi \\x \ne - \frac{\pi }{6} + k\frac{{2\pi }}{3}\end{array} \right.\,\,\left( {k \in \mathbb{Z}} \right)\)
Vậy tập xác định của hàm số là \(D = \mathbb{R}\backslash \left\{ { - \frac{\pi }{2} + k2\pi ,\,\, - \frac{\pi }{6} + k\frac{{2\pi }}{3}|k \in \mathbb{Z}} \right\}\).
d) Biểu thức tan x + cot x có nghĩa khi
\(\left\{ \begin{array}{l}\sin x \ne 0\\\cos x \ne 0\end{array} \right. \Leftrightarrow 2\sin x\cos x \ne 0 \Leftrightarrow \sin 2x \ne 0 \Leftrightarrow 2x \ne k\pi \,\,\left( {k \in \mathbb{Z}} \right)\)\( \Leftrightarrow x \ne k\frac{\pi }{2}\,\,\,\left( {k \in \mathbb{Z}} \right)\).
Vậy tập xác định của hàm số là \(D = \mathbb{R}\backslash \left\{ {k\frac{\pi }{2}|k \in \mathbb{Z}} \right\}\).
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Số nghiệm của phương trình \(2\cos x = \sqrt 3 \) trên đoạn \(\left[ {0;\,\frac{{5\pi }}{2}} \right]\) là
A. 1.
B. 4.
C. 3.
D. 2.
Câu 2:
Trong các đẳng thức sau, đẳng thức nào sai?
A. sin 2a = 2sin a cos a.
B. cos 2a = cos2 a – sin2 a.
C. cos 2a = 1 – 2sin2 a.
D. tan 2a = \(\frac{{2\tan a}}{{1 + {{\tan }^2}a}}\).
Câu 3:
Trong các đẳng thức sau, đẳng thức nào đúng?
A. sin(180° – a) = – cos a.
B. sin(180° – a) = – sin a.
C. sin(180° – a) = sin a.
D. sin(180° – a) = cos a.
Câu 4:
Câu 5:
Trong các đẳng thức sau, đẳng thức nào sai?
A. \(\sin \left( {\frac{\pi }{2} - x} \right) = \cos x\).
B. \(\sin \left( {\frac{\pi }{2} + x} \right) = \cos x\).
C. \(\tan \left( {\frac{\pi }{2} - x} \right) = \cot x\).
D. \(\tan \left( {\frac{\pi }{2} + x} \right) = \cot x\).
Câu 6:
Câu 7:
Biết sin x = \(\frac{1}{2}\). Giá trị của cos2 x bằng
A. \({\cos ^2}x = \frac{1}{2}\).
B. \({\cos ^2}x = \frac{{\sqrt 3 }}{2}\).
C. \({\cos ^2}x = \frac{1}{4}\).
D. \({\cos ^2}x = \frac{3}{4}\).
về câu hỏi!