Câu hỏi:

13/07/2024 3,027

Tìm giá trị lớn nhất và giá trị nhỏ nhất của p

a) y = sin x – cos x;

b) y = sin x + sin\(\left( {\frac{\pi }{3} - x} \right)\);

c) y = sin4 x + cos4 x;

d) y = cos 2x + 2cos x – 1.

Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).

Tổng ôn toán Tổng ôn lý Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Lời giải

a) Ta có y = sin x – cos x = \(\sqrt 2 \sin \left( {x - \frac{\pi }{4}} \right)\).

Vì \( - 1 \le \sin \left( {x - \frac{\pi }{4}} \right) \le 1\) nên \( - \sqrt 2 \le \sqrt 2 \sin \left( {x - \frac{\pi }{4}} \right) \le \sqrt 2 \), với mọi \(x \in \mathbb{R}\).

Vậy giá trị lớn nhất của hàm số là \(\sqrt 2 \), đạt được khi \(\sin \left( {x - \frac{\pi }{4}} \right) = 1\)

\( \Leftrightarrow x - \frac{\pi }{4} = \frac{\pi }{2} + k2\pi \,\,\left( {k \in \mathbb{Z}} \right)\) \( \Leftrightarrow x = \frac{{3\pi }}{4} + k2\pi \,\,\left( {k \in \mathbb{Z}} \right)\).

Giá trị nhỏ nhất của hàm số là \( - \sqrt 2 \), đạt được khi \(\sin \left( {x - \frac{\pi }{4}} \right) = - 1\)

\( \Leftrightarrow x - \frac{\pi }{4} = - \frac{\pi }{2} + k2\pi \,\,\left( {k \in \mathbb{Z}} \right)\) \( \Leftrightarrow x = - \frac{\pi }{4} + k2\pi \,\,\left( {k \in \mathbb{Z}} \right)\).

b) Ta có y = sin x + sin\(\left( {\frac{\pi }{3} - x} \right)\) \( = 2\sin \frac{{x + \frac{\pi }{3} - x}}{2}\cos \frac{{x - \frac{\pi }{3} + x}}{2}\)

\( = 2\sin \frac{\pi }{6}\cos \left( {x - \frac{\pi }{6}} \right)\)\( = 2.\frac{1}{2}\cos \left( {x - \frac{\pi }{6}} \right) = \cos \left( {x - \frac{\pi }{6}} \right)\).

Ta có \( - 1 \le \cos \left( {x - \frac{\pi }{6}} \right) \le 1\,\,\forall x \in \mathbb{R}\).

Vậy giá trị lớn nhất của hàm số là 1, đạt được khi \(\cos \left( {x - \frac{\pi }{6}} \right) = 1\)\( \Leftrightarrow x - \frac{\pi }{6} = k2\pi \,\,\left( {k \in \mathbb{Z}} \right)\)\( \Leftrightarrow x = \frac{\pi }{6} + k2\pi \,\,\left( {k \in \mathbb{Z}} \right)\) và giá trị nhỏ nhất của hàm số là – 1, đạt được khi \(\cos \left( {x - \frac{\pi }{6}} \right) = - 1\)\( \Leftrightarrow x - \frac{\pi }{6} = \pi + k2\pi \,\,\left( {k \in \mathbb{Z}} \right)\)\( \Leftrightarrow x = \frac{{7\pi }}{6} + k2\pi \,\,\left( {k \in \mathbb{Z}} \right)\).

c) Ta có y = sin4 x + cos4 x = (sin2 x + cos2 x)2 – 2sin2 x cos2 x

= 1 – 2 (sin x cos x)2 = \(1 - 2.{\left( {\frac{{\sin 2x}}{2}} \right)^2}\)= \(1 - \frac{1}{2}{\sin ^2}2x\)

= \(1 - \frac{1}{2}.\frac{{1 - \cos 4x}}{2}\) = \(1 - \frac{1}{4} + \frac{1}{4}\cos 4x\) = \(\frac{3}{4} + \frac{1}{4}\cos 4x\).

Vì – 1 ≤ cos 4x ≤ 1 nên \( - \frac{1}{4} \le \frac{1}{4}\cos 4x \le \frac{1}{4}\), do đó \(\frac{3}{4} - \frac{1}{4} \le \frac{3}{4} + \frac{1}{4}\cos 4x \le \frac{3}{4} + \frac{1}{4}\)

hay \(\frac{1}{2} \le \frac{3}{4} + \frac{1}{4}\cos 4x \le 1\,\,\,\forall x \in \mathbb{R}\).

Vậy giá trị lớn nhất của hàm số là 1, đạt được khi cos 4x = 1 4x = k2π (k ℤ)

\( \Leftrightarrow x = k\frac{\pi }{2}\,\,\left( {k \in \mathbb{Z}} \right)\).

Giá trị nhỏ nhất của hàm số là \(\frac{1}{2}\), đạt được khi cos 4x = – 1 4x = π + k2π (k ℤ)

\( \Leftrightarrow x = \frac{\pi }{4} + k\frac{\pi }{2}\,\,\left( {k \in \mathbb{Z}} \right)\).

d) Ta có y = cos 2x + 2cos x − 1

= (2cos2 x – 1) + 2cos x – 1

= 2cos2 x + 2cos x – 2

= 2t2 + 2t – 2 với t = cos x [– 1; 1].

Xét hàm số y = 2t2 + 2t – 2 trên đoạn [– 1; 1]. Hàm số này có đồ thị như trong hình vẽ dưới đây.

Media VietJack

Từ đồ thị ở hình trên ta suy ra được giá trị lớn nhất của hàm số đã cho là 2, đạt được khi cos x = 1 x = k2π (k ℤ) và giá trị nhỏ nhất của hàm số là \( - \frac{5}{2}\), đạt được khi \(\cos x = - \frac{1}{2}\)\( \Leftrightarrow x = \pm \frac{{2\pi }}{3} + k2\pi \,\,\left( {k \in \mathbb{Z}} \right)\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Số nghiệm của phương trình \(2\cos x = \sqrt 3 \) trên đoạn \(\left[ {0;\,\frac{{5\pi }}{2}} \right]\) là

A. 1.

B. 4.

C. 3.

D. 2.

Xem đáp án » 13/07/2024 26,412

Câu 2:

Trong các đẳng thức sau, đẳng thức nào sai?

A. sin 2a = 2sin a cos a.

B. cos 2a = cos2 a – sin2 a.

C. cos 2a = 1 – 2sin2 a.

D. tan 2a = \(\frac{{2\tan a}}{{1 + {{\tan }^2}a}}\).

Xem đáp án » 13/07/2024 22,651

Câu 3:

Trong các đẳng thức sau, đẳng thức nào đúng?

A. sin(180° – a) = – cos a.

B. sin(180° – a) = – sin a.

C. sin(180° – a) = sin a.

D. sin(180° – a) = cos a.

Xem đáp án » 13/07/2024 12,307

Câu 4:

Trong các đẳng thức sau, đẳng thức nào sai?

A. \(\sin \left( {\frac{\pi }{2} - x} \right) = \cos x\).

B. \(\sin \left( {\frac{\pi }{2} + x} \right) = \cos x\).

C. \(\tan \left( {\frac{\pi }{2} - x} \right) = \cot x\).

D. \(\tan \left( {\frac{\pi }{2} + x} \right) = \cot x\).

Xem đáp án » 13/07/2024 10,670

Câu 5:

Kim phút và kim giờ của đồng hồ lớn nhà Bưu điện Thành phố Hà Nội theo thứ tự dài 1,75 m và 1,26 m. Hỏi trong 15 phút, mũi kim phút vạch nên cung tròn có độ dài bao nhiêu mét? Cũng câu hỏi đó cho mũi kim giờ.

Xem đáp án » 13/07/2024 10,447

Câu 6:

Huyện lị Quản Bạ tỉnh Hà Giang và huyện lị Cái Nước tỉnh Cà Mau cùng nằm ở 105° kinh đông, nhưng Quản Bạ ở 23° vĩ bắc, Cái Nước ở vĩ độ 9° bắc. Hãy tính độ dài cung kinh tuyến nối hai huyện lị đó (khoảng cách theo đường chim bay), coi Trái Đất có bán kính 6 378 km.

Xem đáp án » 13/07/2024 7,509

Câu 7:

Cho \(\frac{\pi }{2} < \alpha < \pi \). Mệnh đề nào sau đây đúng?

A. sin α < 0; cos α > 0.

B. sin α > 0; cos α > 0.

C. sin α < 0; cos α < 0.

D. sin α > 0; cos α < 0. 

Xem đáp án » 13/07/2024 7,369

Bình luận


Bình luận
Đăng ký gói thi VIP

VIP 1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 2 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 3 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 4 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

Vietjack official store