Câu hỏi:

13/07/2024 2,006

Xét tính chẵn lẻ của các hàm số sau:

a) y = sin3 x – cot x;

b) \(y = \frac{{\cos x + {{\tan }^2}x}}{{\cos x}}\);

c) y = sin 2x + cos x;

d) \(y = 2\cos \left( {\frac{{3\pi }}{4} + x} \right)\sin \left( {\frac{\pi }{4} - x} \right)\).

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Lời giải

a) Tập xác định của hàm số y = sin3 x – cot x là D = ℝ \ {kπ | k ℤ}.

Nếu kí hiệu f(x) = sin3 x + cot x thì với mọi x D ta có: – x D và

f(– x) = sin3 (–x) – cot(– x) = – sin3 x + cot x = – (sin3 x – cot x) = – f(x).

Vậy hàm số đã cho là hàm số lẻ.

b) Tập xác định của hàm số \(y = \frac{{\cos x + {{\tan }^2}x}}{{\cos x}}\) là \(D = \mathbb{R}\backslash \left\{ {\frac{\pi }{2} + k\pi |k \in \mathbb{Z}} \right\}\).

Nếu kí hiệu \(f\left( x \right) = \frac{{\cos x + {{\tan }^2}x}}{{\cos x}}\) thì với mọi x D ta có: – x D và

\(f\left( { - x} \right) = \frac{{\cos \left( { - x} \right) + {{\tan }^2}\left( { - x} \right)}}{{\cos \left( { - x} \right)}} = \frac{{\cos x + {{\left( { - \tan x} \right)}^2}}}{{\cos x}} = \frac{{\cos x + {{\tan }^2}x}}{{\cos x}} = f\left( x \right)\).

Vậy hàm số đã cho là hàm số chẵn.

c) Tập xác định của hàm số y = sin 2x + cos x là D = ℝ.

Nếu kí hiệu f(x) = sin 2x + cos x thì với mọi x D ta có: – x D và

f(– x) = sin [2(– x)] + cos (– x) = – sin 2x + cos x ≠ ± f(x).

Vậy hàm số đã cho là hàm số không chẵn cũng không lẻ.

d) Tập xác định của hàm số \(y = 2\cos \left( {\frac{{3\pi }}{4} + x} \right)\sin \left( {\frac{\pi }{4} - x} \right)\) là D = ℝ.

Ta có \(y = 2\cos \left( {\frac{{3\pi }}{4} + x} \right)\sin \left( {\frac{\pi }{4} - x} \right)\)

\( = \sin \left[ {\left( {\frac{\pi }{4} - x} \right) + \left( {\frac{{3\pi }}{4} + x} \right)} \right] + \sin \left[ {\left( {\frac{\pi }{4} - x} \right) - \left( {\frac{{3\pi }}{4} + x} \right)} \right]\)

\( = \sin \pi + \sin \left( { - \frac{\pi }{2} - 2x} \right)\)\( = 0 - \sin \left( {\frac{\pi }{2} + 2x} \right)\)

\( = - \cos \left[ {\frac{\pi }{2} - \left( {\frac{\pi }{2} + 2x} \right)} \right]\)\( = - \cos 2x\).

Nếu kí hiệu \(f\left( x \right) = 2\cos \left( {\frac{{3\pi }}{4} + x} \right)\sin \left( {\frac{\pi }{4} - x} \right) = - \cos 2x\) thì với mọi x D ta có: – x D và f(– x) = – cos (– 2x) = – cos 2x = f(x).

Vậy hàm số đã cho là hàm số chẵn.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Lời giải

Đáp án đúng là: C

Ta có \(2\cos x = \sqrt 3 \)\( \Leftrightarrow \cos x = \frac{{\sqrt 3 }}{2}\)\( \Leftrightarrow \cos x = \cos \frac{\pi }{6}\)\( \Leftrightarrow x = \pm \frac{\pi }{6} + k2\pi \,\,\,\left( {k \in \mathbb{Z}} \right)\).

Vì \(x \in \left[ {0;\,\frac{{5\pi }}{2}} \right]\) nên:

+ Với \(x = \frac{\pi }{6} + k2\pi \,\,\,\left( {k \in \mathbb{Z}} \right)\) thì \(0 \le \frac{\pi }{6} + k2\pi \le \frac{{5\pi }}{2} \Leftrightarrow - \frac{1}{{12}} \le k \le \frac{7}{6}\) , mà k ℤ, từ đó suy ra k {0; 1}.

+ Với \(x = \frac{\pi }{6} + k2\pi \,\,\,\left( {k \in \mathbb{Z}} \right)\) thì \(0 \le - \frac{\pi }{6} + k2\pi \le \frac{{5\pi }}{2} \Leftrightarrow \frac{1}{{12}} \le k \le \frac{4}{3}\), mà k ℤ, từ đó suy ra k = 1.

Vậy phương trình \(2\cos x = \sqrt 3 \) có 3 nghiệm trên đoạn \(\left[ {0;\,\frac{{5\pi }}{2}} \right]\).

Lời giải

Lời giải

Đáp án đúng là: D

Công thức nhân đôi:

sin 2a = 2sin a cos a.

cos 2a = cos2 a – sin2 a = 1 – 2sin2 a.

tan 2a = \(\frac{{2\tan a}}{{1 - {{\tan }^2}a}}\).

Vậy đáp án D sai.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP