Câu hỏi:
13/07/2024 897Giải các phương trình sau:
a) \(\sin 3x = - \frac{{\sqrt 3 }}{2}\);
b) \(\tan \left( {\frac{x}{3} + 10^\circ } \right) = - \frac{1}{{\sqrt 3 }}\);
c) sin 3x – cos 5x = 0;
d) tan 3x tan x = 1.
Sách mới 2k7: 30 đề đánh giá năng lực DHQG Hà Nội, Tp. Hồ Chí Minh, BKHN 2025 mới nhất (600 trang - chỉ từ 140k).
Quảng cáo
Trả lời:
Lời giải
a) Ta có \(\sin 3x = - \frac{{\sqrt 3 }}{2}\)
\( \Leftrightarrow \sin 3x = \sin \left( { - \frac{\pi }{3}} \right)\)
\( \Leftrightarrow \left[ \begin{array}{l}3x = - \frac{\pi }{3} + k2\pi \\3x = \pi - \left( { - \frac{\pi }{3}} \right) + k2\pi \end{array} \right.\,\,\left( {k \in \mathbb{Z}} \right)\)
\( \Leftrightarrow \left[ \begin{array}{l}x = - \frac{\pi }{9} + k\frac{{2\pi }}{3}\\3x = \frac{{4\pi }}{9} + k\frac{{2\pi }}{3}\end{array} \right.\,\,\left( {k \in \mathbb{Z}} \right)\).
b) Ta có \(\tan \left( {\frac{x}{3} + 10^\circ } \right) = - \frac{1}{{\sqrt 3 }}\)
\( \Leftrightarrow \tan \left( {\frac{x}{3} + 10^\circ } \right) = \tan \left( { - 30^\circ } \right)\)
⇔ \(\frac{x}{3}\) + 10° = – 30° + k180° (k ∈ ℤ)
⇔ x = – 120° + k540° (k ∈ ℤ).
c) Ta có sin 3x – cos 5x = 0
⇔ sin 3x = cos 5x
\( \Leftrightarrow \sin 3x = \sin \left( {\frac{\pi }{2} - 5x} \right)\)
\( \Leftrightarrow \left[ \begin{array}{l}3x = \frac{\pi }{2} - 5x + k2\pi \\3x = \pi - \left( {\frac{\pi }{2} - 5x} \right) + k2\pi \end{array} \right.\,\,\left( {k \in \mathbb{Z}} \right)\)
\( \Leftrightarrow \left[ \begin{array}{l}x = \frac{\pi }{{16}} + k\frac{\pi }{4}\\x = - \frac{\pi }{4} - k\pi \end{array} \right.\,\,\,\left( {k \in \mathbb{Z}} \right)\).
d) Điều kiện cos 3x ≠ 0 và cos x ≠ 0 ⇔ cos3x ≠ 0 .
Ta có tan 3x tan x = 1
\( \Leftrightarrow \tan 3x = \frac{1}{{\tan x}}\)
⇔ tan 3x = cot x
\( \Leftrightarrow \tan 3x = \tan \left( {\frac{\pi }{2} - x} \right)\)
\( \Leftrightarrow 3x = \frac{\pi }{2} - x + k\pi \,\,\left( {k \in \mathbb{Z}} \right)\)
\( \Leftrightarrow x = \frac{\pi }{8} + k\frac{\pi }{4}\,\,\left( {k \in \mathbb{Z}} \right)\).
Ta thấy \(x = \frac{\pi }{8} + k\frac{\pi }{4}\,\,\left( {k \in \mathbb{Z}} \right)\) thoả mãn điều kiện.
Vậy nghiệm của phương trình là \(x = \frac{\pi }{8} + k\frac{\pi }{4}\,\,\left( {k \in \mathbb{Z}} \right)\).
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Số nghiệm của phương trình \(2\cos x = \sqrt 3 \) trên đoạn \(\left[ {0;\,\frac{{5\pi }}{2}} \right]\) là
A. 1.
B. 4.
C. 3.
D. 2.
Câu 2:
Trong các đẳng thức sau, đẳng thức nào sai?
A. sin 2a = 2sin a cos a.
B. cos 2a = cos2 a – sin2 a.
C. cos 2a = 1 – 2sin2 a.
D. tan 2a = \(\frac{{2\tan a}}{{1 + {{\tan }^2}a}}\).
Câu 3:
Trong các đẳng thức sau, đẳng thức nào đúng?
A. sin(180° – a) = – cos a.
B. sin(180° – a) = – sin a.
C. sin(180° – a) = sin a.
D. sin(180° – a) = cos a.
Câu 4:
Câu 5:
Trong các đẳng thức sau, đẳng thức nào sai?
A. \(\sin \left( {\frac{\pi }{2} - x} \right) = \cos x\).
B. \(\sin \left( {\frac{\pi }{2} + x} \right) = \cos x\).
C. \(\tan \left( {\frac{\pi }{2} - x} \right) = \cot x\).
D. \(\tan \left( {\frac{\pi }{2} + x} \right) = \cot x\).
Câu 6:
Câu 7:
Biết sin x = \(\frac{1}{2}\). Giá trị của cos2 x bằng
A. \({\cos ^2}x = \frac{1}{2}\).
B. \({\cos ^2}x = \frac{{\sqrt 3 }}{2}\).
C. \({\cos ^2}x = \frac{1}{4}\).
D. \({\cos ^2}x = \frac{3}{4}\).
về câu hỏi!