Câu hỏi:
13/07/2024 1,074Giải các phương trình sau:
a) \(\sin 3x = - \frac{{\sqrt 3 }}{2}\);
b) \(\tan \left( {\frac{x}{3} + 10^\circ } \right) = - \frac{1}{{\sqrt 3 }}\);
c) sin 3x – cos 5x = 0;
d) tan 3x tan x = 1.
Câu hỏi trong đề: Giải SBT Toán 11 KNTT Bài tập cuối chương I có đáp án !!
Bắt đầu thiQuảng cáo
Trả lời:
Lời giải
a) Ta có \(\sin 3x = - \frac{{\sqrt 3 }}{2}\)
\( \Leftrightarrow \sin 3x = \sin \left( { - \frac{\pi }{3}} \right)\)
\( \Leftrightarrow \left[ \begin{array}{l}3x = - \frac{\pi }{3} + k2\pi \\3x = \pi - \left( { - \frac{\pi }{3}} \right) + k2\pi \end{array} \right.\,\,\left( {k \in \mathbb{Z}} \right)\)
\( \Leftrightarrow \left[ \begin{array}{l}x = - \frac{\pi }{9} + k\frac{{2\pi }}{3}\\3x = \frac{{4\pi }}{9} + k\frac{{2\pi }}{3}\end{array} \right.\,\,\left( {k \in \mathbb{Z}} \right)\).
b) Ta có \(\tan \left( {\frac{x}{3} + 10^\circ } \right) = - \frac{1}{{\sqrt 3 }}\)
\( \Leftrightarrow \tan \left( {\frac{x}{3} + 10^\circ } \right) = \tan \left( { - 30^\circ } \right)\)
⇔ \(\frac{x}{3}\) + 10° = – 30° + k180° (k ∈ ℤ)
⇔ x = – 120° + k540° (k ∈ ℤ).
c) Ta có sin 3x – cos 5x = 0
⇔ sin 3x = cos 5x
\( \Leftrightarrow \sin 3x = \sin \left( {\frac{\pi }{2} - 5x} \right)\)
\( \Leftrightarrow \left[ \begin{array}{l}3x = \frac{\pi }{2} - 5x + k2\pi \\3x = \pi - \left( {\frac{\pi }{2} - 5x} \right) + k2\pi \end{array} \right.\,\,\left( {k \in \mathbb{Z}} \right)\)
\( \Leftrightarrow \left[ \begin{array}{l}x = \frac{\pi }{{16}} + k\frac{\pi }{4}\\x = - \frac{\pi }{4} - k\pi \end{array} \right.\,\,\,\left( {k \in \mathbb{Z}} \right)\).
d) Điều kiện cos 3x ≠ 0 và cos x ≠ 0 ⇔ cos3x ≠ 0 .
Ta có tan 3x tan x = 1
\( \Leftrightarrow \tan 3x = \frac{1}{{\tan x}}\)
⇔ tan 3x = cot x
\( \Leftrightarrow \tan 3x = \tan \left( {\frac{\pi }{2} - x} \right)\)
\( \Leftrightarrow 3x = \frac{\pi }{2} - x + k\pi \,\,\left( {k \in \mathbb{Z}} \right)\)
\( \Leftrightarrow x = \frac{\pi }{8} + k\frac{\pi }{4}\,\,\left( {k \in \mathbb{Z}} \right)\).
Ta thấy \(x = \frac{\pi }{8} + k\frac{\pi }{4}\,\,\left( {k \in \mathbb{Z}} \right)\) thoả mãn điều kiện.
Vậy nghiệm của phương trình là \(x = \frac{\pi }{8} + k\frac{\pi }{4}\,\,\left( {k \in \mathbb{Z}} \right)\).
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Số nghiệm của phương trình \(2\cos x = \sqrt 3 \) trên đoạn \(\left[ {0;\,\frac{{5\pi }}{2}} \right]\) là
A. 1.
B. 4.
C. 3.
D. 2.
Câu 2:
Trong các đẳng thức sau, đẳng thức nào sai?
A. sin 2a = 2sin a cos a.
B. cos 2a = cos2 a – sin2 a.
C. cos 2a = 1 – 2sin2 a.
D. tan 2a = \(\frac{{2\tan a}}{{1 + {{\tan }^2}a}}\).
Câu 3:
Trong các đẳng thức sau, đẳng thức nào đúng?
A. sin(180° – a) = – cos a.
B. sin(180° – a) = – sin a.
C. sin(180° – a) = sin a.
D. sin(180° – a) = cos a.
Câu 4:
Trong các đẳng thức sau, đẳng thức nào sai?
A. \(\sin \left( {\frac{\pi }{2} - x} \right) = \cos x\).
B. \(\sin \left( {\frac{\pi }{2} + x} \right) = \cos x\).
C. \(\tan \left( {\frac{\pi }{2} - x} \right) = \cot x\).
D. \(\tan \left( {\frac{\pi }{2} + x} \right) = \cot x\).
Câu 5:
Câu 6:
Cho \(\frac{\pi }{2} < \alpha < \pi \). Mệnh đề nào sau đây đúng?
A. sin α < 0; cos α > 0.
B. sin α > 0; cos α > 0.
C. sin α < 0; cos α < 0.
D. sin α > 0; cos α < 0.
Câu 7:
10 Bài tập Nhận biết góc phẳng của góc nhị diện và tính góc phẳng nhị diện (có lời giải)
Bài tập Hình học không gian lớp 11 cơ bản, nâng cao có lời giải (P11)
10 Bài tập Biến cố hợp. Biến cố giao (có lời giải)
38 câu trắc nghiệm Toán 11 Kết nối tri thức Lôgarit có đáp án
10 Bài tập Nhận biết góc phẳng của góc nhị diện và tính góc phẳng nhị diện (có lời giải)
100 câu trắc nghiệm Đạo hàm cơ bản (P1)
15 câu Trắc nghiệm Khoảng cách có đáp án (Nhận biết)
10 Bài tập Bài toán thực tiễn liên quan đến thể tích (có lời giải)
Hãy Đăng nhập hoặc Tạo tài khoản để gửi bình luận