Câu hỏi:
14/09/2023 308
Cho hình thang ABCD vuông góc tại A và B, có AD = 2a, AB = BC = a. Trên tia Ax vuông góc với mặt phẳng (ABCD) lấy một điểm S. Gọi C’, D’ lần lượt là hình chiếu vuông góc của A trên SC và SD. Chứng minh rằng .
Cho hình thang ABCD vuông góc tại A và B, có AD = 2a, AB = BC = a. Trên tia Ax vuông góc với mặt phẳng (ABCD) lấy một điểm S. Gọi C’, D’ lần lượt là hình chiếu vuông góc của A trên SC và SD. Chứng minh rằng .
Quảng cáo
Trả lời:

Ta có: SA ^ BC; AB ^ BC
Þ SB ^ BC (định lý 3 đường vuông góc) hay .
Gọi K là trung điểm của AD ta có CK = AB = AD/2 nên tam giác ACD vuông tại C
Ta có: CD ^ AC; CD ^ SA
Þ CD ^ (SAC)
Dó đó CD ^ SC hay
Vậy
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
y = −x2
Với x = 0 ⇒ y = 0, với x = ±1 ⇒ y = −1
Đồ thị hàm số y = −x² có đỉnh là (0;0) và đi qua 2 điểm (1;−1) và (−1;−1)
y = x − 2
Với x = 0 ⇒ y = −2, với y = 0 ⇒ x = 2
Đồ thị hàm số y = x − 2 đi qua điểm (0;−2) và (2;0)
Đồ thị của hai hàm số như hình vẽ.

Lời giải
Xét phương trình:
f'(x) = x2(x − 1)(x + 2)2(x − 2) = 0
Hàm số đã cho không đạt cực trị tại điểm x = 0 vì là nghiệm bội hai của phương trình f'(x) = 0.
Vậy hàm số đã cho có 3 điểm cực trị.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.