Câu hỏi:
13/07/2024 1,427Cho hàm số (1). Viết phương trình tiếp tuyến của đồ thị hàm số (1), biết tiếp tuyến đó cắt trục hoành, trục tung lần lượt tại hai điểm phân biệt A, B và tam giác OAB cân tại gốc tọa độ 0.
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Gọi điểm M(x0; y0) thuộc đồ thị hàm số (C).
Phương trình tiếp tuyến tại M có dạng:
Tiếp tuyến giao với trục hoành và trục tung tại 2 điểm phân biệt A, B và tam giác OAB cân tại O nên tiếp tuyến d vuông góc với một trong 2 đường phân giác y = x hoặc y = −x.
+) Trường hợp 1: d vuông góc với đường phân giác y = x thì ta được:
Với x0 = −1; y0 = 1 ta có phương trình tiếp tuyến tại M là: y = −x (loại)
Với x0 = −2; y0 = 0 ta có phương trình tiếp tuyến tại M là:
y = −x − 2
+) Trường hợp 2: d vuông góc với đường phân giác y = −x thì ta được:
(KTM)
Vậy phương trình tiếp tuyến cần tìm là y = −x – 2.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho hàm số y = f(x) có đạo hàm f'(x) = x2(x − 1)(x + 2)2(x − 2). Tìm số điểm cực trị của hàm số đã cho.
Câu 3:
Tìm giá trị nhỏ nhất của hàm số f(x) = x4 − 10x2 + 2 trên đoạn [−1;2].
Câu 4:
Cho một đa giác (H) có 60 đỉnh nội tiếp một đường tròn (O). Người ta lập một tứ giác tùy ý có bốn đỉnh là các đỉnh của (H). Tính xác suất để lập được một tứ giác có bốn cạnh đều là đường chéo của (H).
Câu 5:
Cho hàm số với a, b là các số hữu tỉ thỏa điều kiện . Tính T = a + b.
Câu 7:
Vẽ đồ thị các hàm số y = –x ² và y = x – 2 trên cùng một hệ trục tọa độ.
về câu hỏi!