Câu hỏi:
13/07/2024 4,325
Cho hàm số (1). Viết phương trình tiếp tuyến của đồ thị hàm số (1), biết tiếp tuyến đó cắt trục hoành, trục tung lần lượt tại hai điểm phân biệt A, B và tam giác OAB cân tại gốc tọa độ 0.
Cho hàm số (1). Viết phương trình tiếp tuyến của đồ thị hàm số (1), biết tiếp tuyến đó cắt trục hoành, trục tung lần lượt tại hai điểm phân biệt A, B và tam giác OAB cân tại gốc tọa độ 0.
Quảng cáo
Trả lời:
Gọi điểm M(x0; y0) thuộc đồ thị hàm số (C).
Phương trình tiếp tuyến tại M có dạng:
Tiếp tuyến giao với trục hoành và trục tung tại 2 điểm phân biệt A, B và tam giác OAB cân tại O nên tiếp tuyến d vuông góc với một trong 2 đường phân giác y = x hoặc y = −x.
+) Trường hợp 1: d vuông góc với đường phân giác y = x thì ta được:
Với x0 = −1; y0 = 1 ta có phương trình tiếp tuyến tại M là: y = −x (loại)
Với x0 = −2; y0 = 0 ta có phương trình tiếp tuyến tại M là:
y = −x − 2
+) Trường hợp 2: d vuông góc với đường phân giác y = −x thì ta được:
(KTM)
Vậy phương trình tiếp tuyến cần tìm là y = −x – 2.
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
y = −x2
Với x = 0 ⇒ y = 0, với x = ±1 ⇒ y = −1
Đồ thị hàm số y = −x² có đỉnh là (0;0) và đi qua 2 điểm (1;−1) và (−1;−1)
y = x − 2
Với x = 0 ⇒ y = −2, với y = 0 ⇒ x = 2
Đồ thị hàm số y = x − 2 đi qua điểm (0;−2) và (2;0)
Đồ thị của hai hàm số như hình vẽ.

Lời giải
Xét phương trình:
f'(x) = x2(x − 1)(x + 2)2(x − 2) = 0
Hàm số đã cho không đạt cực trị tại điểm x = 0 vì là nghiệm bội hai của phương trình f'(x) = 0.
Vậy hàm số đã cho có 3 điểm cực trị.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.