Câu hỏi:
12/07/2024 493
Cho nửa đường tròn tâm O bán kính R đường kính AB. Gọi Ax By là các tia tiếp tuyến của nửa đường tròn và thuộc cùng 1 nửa mặt phẳng có chứa nửa đường tròn. Qua M thuộc nửa đường tròn vẽ tiếp tuyến với nửa đường tròn cắt Ax, By lần lượt tại C, D. Chứng minh rằng AC. BD = R2.
Cho nửa đường tròn tâm O bán kính R đường kính AB. Gọi Ax By là các tia tiếp tuyến của nửa đường tròn và thuộc cùng 1 nửa mặt phẳng có chứa nửa đường tròn. Qua M thuộc nửa đường tròn vẽ tiếp tuyến với nửa đường tròn cắt Ax, By lần lượt tại C, D. Chứng minh rằng AC. BD = R2.
Quảng cáo
Trả lời:

Ta có:
• (tính chất 2 tiếp tuyến cắt nhau)
• (tính chất 2 tiếp tuyến cắt nhau)
Þ ΔCOD vuông tại O, có đường cao OM
Do CA và CM là hai tiếp tuyến cắt nhau nên CA = CM
Do DM và DB là hai tiếp tuyến cắt nhau nên DM = DB
Áp dụng hệ thức lượng ta có:
OM2 = CM. MD
Þ R2 = CA. DB (đpcm)
Vậy AC. BD = R2.
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
y = −x2
Với x = 0 ⇒ y = 0, với x = ±1 ⇒ y = −1
Đồ thị hàm số y = −x² có đỉnh là (0;0) và đi qua 2 điểm (1;−1) và (−1;−1)
y = x − 2
Với x = 0 ⇒ y = −2, với y = 0 ⇒ x = 2
Đồ thị hàm số y = x − 2 đi qua điểm (0;−2) và (2;0)
Đồ thị của hai hàm số như hình vẽ.

Lời giải
Xét phương trình:
f'(x) = x2(x − 1)(x + 2)2(x − 2) = 0
Hàm số đã cho không đạt cực trị tại điểm x = 0 vì là nghiệm bội hai của phương trình f'(x) = 0.
Vậy hàm số đã cho có 3 điểm cực trị.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.