Cho hai học sinh lớp A, ba học sinh lớp B và bốn học sinh lớp C xếp thành một hàng ngang sao cho giữa hai học sinh lớp A không có học sinh nào lớp B. Hỏi có bao nhiêu cách xếp hàng như vậy?
Cho hai học sinh lớp A, ba học sinh lớp B và bốn học sinh lớp C xếp thành một hàng ngang sao cho giữa hai học sinh lớp A không có học sinh nào lớp B. Hỏi có bao nhiêu cách xếp hàng như vậy?
Quảng cáo
Trả lời:
Đáp án đúng là: C
Xét các trường hợp sau:
TH1: Hai học sinh lớp A đứng cạnh nhau có 2 ! . 8! cách
TH2: Giữa hai học sinh lớp A có một học sinh lớp C có \(2!.A_4^1.7!\) cách
TH3: Giữa hai học sinh lớp A có hai học sinh lớp C có \(2!.A_4^2.6!\) cách
TH4: Giữa hai học sinh lớp A có ba học sinh lớp C có \(2!.A_4^3.5!\) cách
TH5: Giữa hai học sinh lớp \({\rm{A}}\) có bốn học sinh lớp C có \(2!.A_4^4.4!\) cách
Vậy theo quy tắc cộng có \(2!\left( {8! + A_4^17! + A_4^26! + A_4^35! + A_4^44!} \right) = 145152{\rm{ }}\)cách
Vậy đáp án cần chọn là C.
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án đúng là: A
Gọi ∆ là đường thẳng cần tìm.
Gọi \(B = \Delta \cap Oy \Rightarrow B(0;t;0)\)
Ta có: (d) vuông góc với ∆ nên ta có:
\(\begin{array}{l}\overrightarrow {{u_d}} .\overrightarrow {AB} = 0 \Leftrightarrow (1; - 2;2).( - 2;t - 1; - 3) = 0\\ \Leftrightarrow - 2 - 2t + 2 - 6 = 0 \Leftrightarrow t = - 3\end{array}\)
Nên \(B(0; - 3;0);A(2;1;3)\)
Suy ra \(\overrightarrow {AB} = ( - 2; - 4; - 3)\)
Phương trình đường thẳng cần tìm có 1 vtcp là (2; 4; 3) và đi qua điểm B(0; –3; 0) dạng: \(\left\{ \begin{array}{l}x = 2t\\y = - 3 + 4t\\z = 3t\end{array} \right.\)
Vậy đáp án cần chọn là A.
Lời giải
Đáp án đúng là: A
Ta có:
\(\int_1^2 {\frac{{x + 1}}{{{x^2} + x\ln x}}} \;{\rm{d}}x = \int_1^2 {\frac{{1 + \frac{1}{x}}}{{x + \ln x}}} \;{\rm{d}}x = \int_1^2 {\frac{{{\rm{d}}(x + \ln x)}}{{x + \ln x}}} = \ln |x + \ln x|_1^2 = \ln (\ln 2 + 2)\)
Mặt khác:
\(\begin{array}{l}\int_1^2 {\frac{{x + 1}}{{{x^2} + x\ln x}}} \;{\rm{d}}x = \ln (\ln a + b) = \ln (\ln 2 + 2)\\ \Rightarrow \left\{ {\begin{array}{*{20}{l}}{a = 2}\\{b = 2}\end{array} \Rightarrow P = 12} \right.\end{array}\)
Vậy đáp án cần chọn là A.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.