Câu hỏi:

19/09/2023 964 Lưu

Cho hai học sinh lớp A, ba học sinh lớp B và bốn học sinh lớp C xếp thành một hàng ngang sao cho giữa hai học sinh lớp A không có học sinh nào lớp B. Hỏi có bao nhiêu cách xếp hàng như vậy?

A. 80 640

B. 108 864

C. 145 152

D. 217 728.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án đúng là: C

Xét các trường hợp sau:

TH1: Hai học sinh lớp A đứng cạnh nhau có 2 ! . 8! cách

TH2: Giữa hai học sinh lớp A có một học sinh lớp C có \(2!.A_4^1.7!\) cách

TH3: Giữa hai học sinh lớp A có hai học sinh lớp C có \(2!.A_4^2.6!\) cách

TH4: Giữa hai học sinh lớp A có ba học sinh lớp C có \(2!.A_4^3.5!\) cách

TH5: Giữa hai học sinh lớp \({\rm{A}}\) có bốn học sinh lớp C có \(2!.A_4^4.4!\) cách

Vậy theo quy tắc cộng có \(2!\left( {8! + A_4^17! + A_4^26! + A_4^35! + A_4^44!} \right) = 145152{\rm{ }}\)cách

Vậy đáp án cần chọn là C.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. \(\left\{ \begin{array}{l}x = 2t\\y = - 3 + 4t\\z = 3t\end{array} \right.\)

B. \(\left\{ \begin{array}{l}x = 2 + 2t\\y = 1 + t\\z = 3 + 3t\end{array} \right.\)

C. \(\left\{ \begin{array}{l}x = 2 + 2t\\y = 1 + 3t\\z = 3 + 2t\end{array} \right.\)

D. \(\left\{ \begin{array}{l}x = 2t\\y = - 3 + 3t\\z = 2t\end{array} \right.\).

Lời giải

Đáp án đúng là: A

Gọi ∆ là đường thẳng cần tìm.

Gọi \(B = \Delta \cap Oy \Rightarrow B(0;t;0)\)

Ta có: (d) vuông góc với ∆ nên ta có:

\(\begin{array}{l}\overrightarrow {{u_d}} .\overrightarrow {AB} = 0 \Leftrightarrow (1; - 2;2).( - 2;t - 1; - 3) = 0\\ \Leftrightarrow - 2 - 2t + 2 - 6 = 0 \Leftrightarrow t = - 3\end{array}\)

Nên \(B(0; - 3;0);A(2;1;3)\)

Suy ra \(\overrightarrow {AB} = ( - 2; - 4; - 3)\)

Phương trình đường thẳng cần tìm có 1 vtcp là (2; 4; 3) và đi qua điểm B(0; –3; 0) dạng: \(\left\{ \begin{array}{l}x = 2t\\y = - 3 + 4t\\z = 3t\end{array} \right.\)

Vậy đáp án cần chọn là A.

Lời giải

Đáp án đúng là: A

Ta có:

\(\int_1^2 {\frac{{x + 1}}{{{x^2} + x\ln x}}} \;{\rm{d}}x = \int_1^2 {\frac{{1 + \frac{1}{x}}}{{x + \ln x}}} \;{\rm{d}}x = \int_1^2 {\frac{{{\rm{d}}(x + \ln x)}}{{x + \ln x}}} = \ln |x + \ln x|_1^2 = \ln (\ln 2 + 2)\)

Mặt khác:

\(\begin{array}{l}\int_1^2 {\frac{{x + 1}}{{{x^2} + x\ln x}}} \;{\rm{d}}x = \ln (\ln a + b) = \ln (\ln 2 + 2)\\ \Rightarrow \left\{ {\begin{array}{*{20}{l}}{a = 2}\\{b = 2}\end{array} \Rightarrow P = 12} \right.\end{array}\)

Vậy đáp án cần chọn là A.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \(\overrightarrow {DO} = \overrightarrow {EB} - \overrightarrow {EO} \)

B. \(\overrightarrow {OC} = \overrightarrow {EB} + \overrightarrow {EO} \)

C. \(\overrightarrow {OA} + \overrightarrow {OC} + \overrightarrow {OD} + \overrightarrow {OE} + \overrightarrow {OF} = \vec 0\)

D. \(\overrightarrow {BE} + \overrightarrow {BF} - \overrightarrow {DO} = \vec 0\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP