Câu hỏi:
19/09/2023 192Cho hai đường thẳng a và b song song với nhau. Trên đường thẳng a có 10 điểm phân biệt, trên đường thẳng b có 8 điểm phân biệt. Hỏi từ các điểm đã cho lập được bao nhiêu tam giác?
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Đáp án đúng là: A
+ Trường hợp 1: Tam giác đươc tạo ra có 2 điểm thuộc đường thẳng a và 1 điểm thuộc đường thẳng b
Có: 10 . 9 = 90 cách chọn 2 điểm thuộc đường thẳng a
Và có 8 cách chọn 1 điểm thuộc đường thẳng b
Trong trường hợp này có: 90 . 8 = 720 cách
+ Trường hợp 2: Tam giác được tạo thành có 1 điểm thuộc a và 2 điểm thuộc đường thẳng b
Có 10 cách chọn 1 điểm thuộc a
Và 8 . 7 = 56 cách chọn 2 điểm thuộc b
Trong trường hợp này có: 10 . 56 = 560 cách
Theo quy tắc cộng có: 720 + 560 = 1280 tam giác
Vậy ta chọn đáp án A.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Trong không gian Oxyz, cho điểm A(2; 1; 3) và đường thẳng d: \(\frac{{x + 1}}{1} = \frac{{y - 1}}{{ - 2}} = \frac{{z - 2}}{2}\). Đường thẳng đi qua A, vuông góc với d và cắt trục Oy có phương trình là:
Câu 2:
Cho hàm số y = f(x) có bảng biến thiên như sau:
Số nghiệm thuộc đoạn [0; 2π] của phương trình f(cosx) = –2 là:
Câu 3:
Biết \(\int\limits_1^2 {\frac{{x + 1}}{{{x^2} + x\ln {\rm{x}}}}} d{\rm{x}} = \ln \left( {\ln a + b} \right)\) với a, b là các số nguyên dương. Tính P = a2 + ab + b2.
Câu 4:
Cho hàm số f(x) có bảng biến thiên như sau:
Số nghiệm thuộc đoạn [–π; 2π] của phương trình 2f(sinx) + 3 = 0 là:
Câu 5:
Từ các số 1, 2, 3, 4, 5, 6, 7 có thể lập được bao nhiêu số tự nhiên chẵn gồm 5 chữ số đôi một khác nhau, đồng thời chia hết cho 9.
Câu 6:
Cho hình nón đỉnh S, góc ở đỉnh bằng 120°, đáy là hình tròn (O; 3R). Cắt hình nón bởi mặt phẳng qua S và tạo với đáy góc 60°. Diện tích thiết diện là:
Câu 7:
Cho hai số thực a và b với 1 < a < b. Khẳng định nào dưới đây là đúng?
về câu hỏi!