Câu hỏi:
19/09/2023 331Cho tam giác đều ABC cạnh a. Biết rằng tập hợp các điểm M thỏa mãn đẳng thức \(\left| {2\overrightarrow {MA} + 3\overrightarrow {MB} + 4\overrightarrow {MC} } \right| = \left| {\overrightarrow {MB} - \overrightarrow {MA} } \right|\) là đường tròn cố định có bán kính R. Tính bán kính R theo a.
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Đáp án đúng là: B
Gọi G là trọng tâm của tam giác ABC
Ta có: \(2\overrightarrow {{\rm{MA}}} + 3\overrightarrow {{\rm{MB}}} + 4\overrightarrow {{\rm{MC}}} \)\( = 2(\overrightarrow {{\rm{MI}}} + \overrightarrow {{\rm{IA}}} ) + 3(\overrightarrow {{\rm{MI}}} + \overrightarrow {{\rm{IB}}} ) + 4(\overrightarrow {{\rm{MI}}} + \overrightarrow {{\rm{IC}}} )\)
Chọn điểm I sao cho
\(2\overrightarrow {{\rm{IA}}} + 3\overrightarrow {{\rm{IB}}} + 4\overrightarrow {{\rm{IC}}} = \vec 0 \Leftrightarrow 3(\overrightarrow {{\rm{IA}}} + \overrightarrow {{\rm{IB}}} + \overrightarrow {{\rm{IC}}} ) + \overrightarrow {{\rm{IC}}} - \overrightarrow {{\rm{IA}}} = \vec 0\)
Mà G là trọng tâm của tam giác ABC
\( \Rightarrow \overrightarrow {{\rm{IA}}} + \overrightarrow {{\rm{IB}}} + \overrightarrow {{\rm{IC}}} = 3\overrightarrow {{\rm{IG}}} \)
Khi đó: \(9\overrightarrow {{\rm{IG}}} + \overrightarrow {{\rm{IC}}} - \overrightarrow {{\rm{IA}}} = \vec 0 \Leftrightarrow 9\overrightarrow {{\rm{IG}}} + \overrightarrow {{\rm{AI}}} + \overrightarrow {{\rm{IC}}} = \vec 0 \Leftrightarrow 9\overrightarrow {{\rm{IG}}} = \overrightarrow {{\rm{CA}}} {\rm{ }}(*)\)
Do đó, \(\left| {2\overrightarrow {{\rm{MA}}} + 3\overrightarrow {{\rm{MB}}} + 4\overrightarrow {{\rm{MC}}} } \right| = \left| {\overrightarrow {{\rm{MB}}} - \overrightarrow {{\rm{MA}}} } \right|\)
\[\begin{array}{l} \Leftrightarrow \left| {9\overrightarrow {{\rm{MI}}} + 2\overrightarrow {{\rm{IA}}} + 3\overrightarrow {{\rm{IB}}} + 4\overrightarrow {{\rm{IC}}} } \right| = \left| {\overrightarrow {{\rm{AB}}} } \right|\\ \Leftrightarrow 9{\rm{MI}} = {\rm{AB}}\end{array}\]
Vì I là điểm cố định thỏa mãn (*) nên tập hợp các điểm M cần tìm là đường tròn tâm I, bán kính \[{\rm{R}} = \frac{{AB}}{9} = \frac{a}{9}\]
Vậy đáp án cần chọn là B.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Trong không gian Oxyz, cho điểm A(2; 1; 3) và đường thẳng d: \(\frac{{x + 1}}{1} = \frac{{y - 1}}{{ - 2}} = \frac{{z - 2}}{2}\). Đường thẳng đi qua A, vuông góc với d và cắt trục Oy có phương trình là:
Câu 2:
Cho hàm số y = f(x) có bảng biến thiên như sau:
Số nghiệm thuộc đoạn [0; 2π] của phương trình f(cosx) = –2 là:
Câu 3:
Biết \(\int\limits_1^2 {\frac{{x + 1}}{{{x^2} + x\ln {\rm{x}}}}} d{\rm{x}} = \ln \left( {\ln a + b} \right)\) với a, b là các số nguyên dương. Tính P = a2 + ab + b2.
Câu 4:
Cho hàm số f(x) có bảng biến thiên như sau:
Số nghiệm thuộc đoạn [–π; 2π] của phương trình 2f(sinx) + 3 = 0 là:
Câu 5:
Từ các số 1, 2, 3, 4, 5, 6, 7 có thể lập được bao nhiêu số tự nhiên chẵn gồm 5 chữ số đôi một khác nhau, đồng thời chia hết cho 9.
Câu 6:
Cho hình nón đỉnh S, góc ở đỉnh bằng 120°, đáy là hình tròn (O; 3R). Cắt hình nón bởi mặt phẳng qua S và tạo với đáy góc 60°. Diện tích thiết diện là:
Câu 7:
Cho hai số thực a và b với 1 < a < b. Khẳng định nào dưới đây là đúng?
về câu hỏi!