Câu hỏi:

19/09/2023 916

Cho tam giác đều ABC cạnh a. Biết rằng tập hợp các điểm M thỏa mãn đẳng thức \(\left| {2\overrightarrow {MA} + 3\overrightarrow {MB} + 4\overrightarrow {MC} } \right| = \left| {\overrightarrow {MB} - \overrightarrow {MA} } \right|\) là đường tròn cố định có bán kính R. Tính bán kính R theo a.

Đáp án chính xác

Sách mới 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 49k/cuốn).

Đề toán-lý-hóa Đề văn-sử-địa Tiếng anh & các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là: B

Gọi G là trọng tâm của tam giác ABC

Ta có: \(2\overrightarrow {{\rm{MA}}} + 3\overrightarrow {{\rm{MB}}} + 4\overrightarrow {{\rm{MC}}} \)\( = 2(\overrightarrow {{\rm{MI}}} + \overrightarrow {{\rm{IA}}} ) + 3(\overrightarrow {{\rm{MI}}} + \overrightarrow {{\rm{IB}}} ) + 4(\overrightarrow {{\rm{MI}}} + \overrightarrow {{\rm{IC}}} )\)

Chọn điểm I sao cho

\(2\overrightarrow {{\rm{IA}}} + 3\overrightarrow {{\rm{IB}}} + 4\overrightarrow {{\rm{IC}}} = \vec 0 \Leftrightarrow 3(\overrightarrow {{\rm{IA}}} + \overrightarrow {{\rm{IB}}} + \overrightarrow {{\rm{IC}}} ) + \overrightarrow {{\rm{IC}}} - \overrightarrow {{\rm{IA}}} = \vec 0\)

Mà G là trọng tâm của tam giác ABC

\( \Rightarrow \overrightarrow {{\rm{IA}}} + \overrightarrow {{\rm{IB}}} + \overrightarrow {{\rm{IC}}} = 3\overrightarrow {{\rm{IG}}} \)

Khi đó: \(9\overrightarrow {{\rm{IG}}} + \overrightarrow {{\rm{IC}}} - \overrightarrow {{\rm{IA}}} = \vec 0 \Leftrightarrow 9\overrightarrow {{\rm{IG}}} + \overrightarrow {{\rm{AI}}} + \overrightarrow {{\rm{IC}}} = \vec 0 \Leftrightarrow 9\overrightarrow {{\rm{IG}}} = \overrightarrow {{\rm{CA}}} {\rm{                 }}(*)\)

Do đó, \(\left| {2\overrightarrow {{\rm{MA}}} + 3\overrightarrow {{\rm{MB}}} + 4\overrightarrow {{\rm{MC}}} } \right| = \left| {\overrightarrow {{\rm{MB}}} - \overrightarrow {{\rm{MA}}} } \right|\)

\[\begin{array}{l} \Leftrightarrow \left| {9\overrightarrow {{\rm{MI}}} + 2\overrightarrow {{\rm{IA}}} + 3\overrightarrow {{\rm{IB}}} + 4\overrightarrow {{\rm{IC}}} } \right| = \left| {\overrightarrow {{\rm{AB}}} } \right|\\ \Leftrightarrow 9{\rm{MI}} = {\rm{AB}}\end{array}\]

Vì I là điểm cố định thỏa mãn (*) nên tập hợp các điểm M cần tìm là đường tròn tâm I, bán kính \[{\rm{R}} = \frac{{AB}}{9} = \frac{a}{9}\] 

Vậy đáp án cần chọn là B.

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Trong không gian Oxyz, cho điểm A(2; 1; 3) và đường thẳng d: \(\frac{{x + 1}}{1} = \frac{{y - 1}}{{ - 2}} = \frac{{z - 2}}{2}\). Đường thẳng đi qua A, vuông góc với d và cắt trục Oy có phương trình là:

Xem đáp án » 19/09/2023 26,474

Câu 2:

Biết \(\int\limits_1^2 {\frac{{x + 1}}{{{x^2} + x\ln {\rm{x}}}}} d{\rm{x}} = \ln \left( {\ln a + b} \right)\) với a, b là các số nguyên dương. Tính P = a2 + ab + b2.

Xem đáp án » 19/09/2023 7,584

Câu 3:

Cho hàm số y = f(x) có bảng biến thiên như sau:

Số nghiệm thuộc đoạn [0; 2pi] của phương trình f(cosx) = -2 là: A. 3 B. 0 C. 2  D. 1 (ảnh 1)

Số nghiệm thuộc đoạn [0; 2π] của phương trình f(cosx) = –2 là:

Xem đáp án » 19/09/2023 5,085

Câu 4:

Từ các số 1, 2, 3, 4, 5, 6, 7 có thể lập được bao nhiêu số tự nhiên chẵn gồm 5 chữ số đôi một khác nhau, đồng thời chia hết cho 9.

Xem đáp án » 12/07/2024 2,941

Câu 5:

Cho hình thang vuông ABCD có đáy lớn AB = 4a, đáy nhỏ CD = 2a, đường cao AD = 3a; I là trung điểm của AD. Khi đó \(\left( {\overrightarrow {IA} + \overrightarrow {IB} } \right).\overrightarrow {I{\rm{D}}} \) bằng:

Xem đáp án » 19/09/2023 2,385

Câu 6:

Cho hai số thực a và b với 1 < a < b. Khẳng định nào dưới đây là đúng?

Xem đáp án » 19/09/2023 2,280

Câu 7:

Cho hình bình hành ABCD có O là giao điểm của hai đường chéo. Gọi E, F lần lượt là trung điểm của AB, BC. Đẳng thức nào sau đây sai?

Xem đáp án » 19/09/2023 2,017