Câu hỏi:

19/09/2023 513

Cho khối hộp chữ nhật ABCD.A′B′C′D′ có đáy là hình vuông, BD = 2a, góc giữa hai mặt phẳng (A′BD) và (ABCD) bằng 30°. Thể tích của khối hộp chữ nhật đã cho bằng:

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là: D

Cho khối hộp chữ nhật ABCD.A′B′C′D′ có đáy là hình vuông, BD = 2a, góc giữa (ảnh 1)

Ta có:

(A’BC) ∩ (ABCD) = BD

\(\left\{ \begin{array}{l}AA' \bot B{\rm{D}}\\AO \bot B{\rm{D}}\end{array} \right. \Rightarrow \left( {A'AO} \right) \bot B{\rm{D}}\)

\(\left\{ \begin{array}{l}\left( {A'AO} \right) \cap \left( {A'B{\rm{D}}} \right) = A'O\\\left( {A'AO} \right) \cap \left( {ABC{\rm{D}}} \right) = AO\end{array} \right.\)

Suy ra: \(\widehat {\left( {\left( {A'B{\rm{D}}} \right);\left( {ABC{\rm{D}}} \right)} \right)} = \widehat {\left( {A'O,AO} \right)} = \widehat {AO{\rm{A}}'} = 30^\circ \)

Vì ABCD là hình vuông có hai đường chéo cắt nhau tại O

Suy ra O là trung điểm của AC và BD

Do đó \(AO = \frac{1}{2}AC = \frac{1}{2}B{\rm{D}} = a\)

Xét tam giác A’OA vuông tại A có \(AA' = \tan 30^\circ .AO = \frac{{a\sqrt 3 }}{3}\)

\( \Rightarrow {V_{ABCD.A'B'C'D'}} = {S_{ABC{\rm{D}}}}{\rm{.AA}}' = \frac{1}{2}AC.B{\rm{D}}.AA' = \frac{1}{2}.{(2a)^2} \cdot \frac{{a\sqrt 3 }}{3} = \frac{{2\sqrt 3 {a^3}}}{3}\)

Vậy ta chọn đáp án D.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Trong không gian Oxyz, cho điểm A(2; 1; 3) và đường thẳng d: \(\frac{{x + 1}}{1} = \frac{{y - 1}}{{ - 2}} = \frac{{z - 2}}{2}\). Đường thẳng đi qua A, vuông góc với d và cắt trục Oy có phương trình là:

Lời giải

Đáp án đúng là: A

Gọi ∆ là đường thẳng cần tìm.

Gọi \(B = \Delta \cap Oy \Rightarrow B(0;t;0)\)

Ta có: (d) vuông góc với ∆ nên ta có:

\(\begin{array}{l}\overrightarrow {{u_d}} .\overrightarrow {AB} = 0 \Leftrightarrow (1; - 2;2).( - 2;t - 1; - 3) = 0\\ \Leftrightarrow - 2 - 2t + 2 - 6 = 0 \Leftrightarrow t = - 3\end{array}\)

Nên \(B(0; - 3;0);A(2;1;3)\)

Suy ra \(\overrightarrow {AB} = ( - 2; - 4; - 3)\)

Phương trình đường thẳng cần tìm có 1 vtcp là (2; 4; 3) và đi qua điểm B(0; –3; 0) dạng: \(\left\{ \begin{array}{l}x = 2t\\y = - 3 + 4t\\z = 3t\end{array} \right.\)

Vậy đáp án cần chọn là A.

Lời giải

Đáp án đúng là: A

Ta có:

\(\int_1^2 {\frac{{x + 1}}{{{x^2} + x\ln x}}} \;{\rm{d}}x = \int_1^2 {\frac{{1 + \frac{1}{x}}}{{x + \ln x}}} \;{\rm{d}}x = \int_1^2 {\frac{{{\rm{d}}(x + \ln x)}}{{x + \ln x}}} = \ln |x + \ln x|_1^2 = \ln (\ln 2 + 2)\)

Mặt khác:

\(\begin{array}{l}\int_1^2 {\frac{{x + 1}}{{{x^2} + x\ln x}}} \;{\rm{d}}x = \ln (\ln a + b) = \ln (\ln 2 + 2)\\ \Rightarrow \left\{ {\begin{array}{*{20}{l}}{a = 2}\\{b = 2}\end{array} \Rightarrow P = 12} \right.\end{array}\)

Vậy đáp án cần chọn là A.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Cho hai số thực a và b với 1 < a < b. Khẳng định nào dưới đây là đúng?

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay