Câu hỏi:

19/09/2023 189

Cho hình lăng trụ tam giác đều ABC.A’B’C’ có AB = a, đường thẳng A’B tạo với mặt phẳng (BCC’B’) một góc bằng 30°. Tính thể tích khối lăng trụ ABC.A’B’C’.

Đáp án chính xác

Sale Tết giảm 50% 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 49k/cuốn).

20 đề Toán 20 đề Văn Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là: B

Cho hình lăng trụ tam giác đều ABC.A’B’C’ có AB = a, đường thẳng A’B tạo  (ảnh 1)

Gọi M là trung điểm của B’C’

Vì tam giác A’B’C’ đều nên A’M B’C

Ta có: \(\left\{ \begin{array}{l}A'M \bot B'C'\\A'M \bot BB'\left( {BB' \bot \left( {A'B'C'} \right)} \right)\end{array} \right. \Rightarrow A'M \bot \left( {BCC'B'} \right)\)

\( \Rightarrow \widehat {\left( {A'B;\left( {BCC'B'} \right)} \right)} = \widehat {\left( {A'B;MB} \right)} = \widehat {A'BM} = 30^\circ \)

Theo bài ra ta có \(\Delta A'B'C'\) đều cạnh a có AM là đường cao nên \(A'M = \frac{{a\sqrt 3 }}{2}\)\({S_{A'B'C'}} = \frac{1}{2}.AM.B'C' = \frac{1}{2}.\frac{{a\sqrt 3 }}{2}.a = \frac{{{a^2}\sqrt 3 }}{4}\)

Ta có: \(A'M \bot \left( {BCC'B'} \right) \Rightarrow A'M \bot BM\) nên tam giác A’BM vuông tại M

Suy ra: \(BM = A'M.\cot 30^\circ = \frac{{3a}}{2}\)

Áp dụng định lí Pythagore trong tam giác vuông BB’M ta có:

\(BB' = \sqrt {B{M^2} - B'{M^2}} = \sqrt {{{\left( {\frac{{3a}}{2}} \right)}^2} - {{\left( {\frac{a}{2}} \right)}^2}} = a\sqrt 2 \)

Do đó \({V_{ABC.A'B'C'}} = BB'.{S_{A'B'C'}} = a\sqrt 2 \cdot \frac{{{a^2}\sqrt 3 }}{4} = \frac{{{a^3}\sqrt 6 }}{4}.\)

Vậy đáp án cần chọn là B.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Trong không gian Oxyz, cho điểm A(2; 1; 3) và đường thẳng d: \(\frac{{x + 1}}{1} = \frac{{y - 1}}{{ - 2}} = \frac{{z - 2}}{2}\). Đường thẳng đi qua A, vuông góc với d và cắt trục Oy có phương trình là:

Xem đáp án » 19/09/2023 16,760

Câu 2:

Biết \(\int\limits_1^2 {\frac{{x + 1}}{{{x^2} + x\ln {\rm{x}}}}} d{\rm{x}} = \ln \left( {\ln a + b} \right)\) với a, b là các số nguyên dương. Tính P = a2 + ab + b2.

Xem đáp án » 19/09/2023 5,006

Câu 3:

Cho hàm số y = f(x) có bảng biến thiên như sau:

Số nghiệm thuộc đoạn [0; 2pi] của phương trình f(cosx) = -2 là: A. 3 B. 0 C. 2  D. 1 (ảnh 1)

Số nghiệm thuộc đoạn [0; 2π] của phương trình f(cosx) = –2 là:

Xem đáp án » 19/09/2023 4,437

Câu 4:

Cho hình thang vuông ABCD có đáy lớn AB = 4a, đáy nhỏ CD = 2a, đường cao AD = 3a; I là trung điểm của AD. Khi đó \(\left( {\overrightarrow {IA} + \overrightarrow {IB} } \right).\overrightarrow {I{\rm{D}}} \) bằng:

Xem đáp án » 19/09/2023 2,322

Câu 5:

Cho hình bình hành ABCD có O là giao điểm của hai đường chéo. Gọi E, F lần lượt là trung điểm của AB, BC. Đẳng thức nào sau đây sai?

Xem đáp án » 19/09/2023 1,966

Câu 6:

Từ các số 1, 2, 3, 4, 5, 6, 7 có thể lập được bao nhiêu số tự nhiên chẵn gồm 5 chữ số đôi một khác nhau, đồng thời chia hết cho 9.

Xem đáp án » 12/07/2024 1,902

Câu 7:

Cho hàm số f(x) có bảng biến thiên như sau:

Số nghiệm thuộc đoạn [-pi; 2pi] của phương trình 2f(sinx) + 3 = 0 là: A. 4 B. 6 C. 3 (ảnh 1)

Số nghiệm thuộc đoạn [–π; 2π] của phương trình 2f(sinx) + 3 = 0 là:

Xem đáp án » 19/09/2023 1,864

Bình luận


Bình luận