Câu hỏi:

11/07/2024 3,042

Cho hai hình bình hành ABCD và ABEF không cùng nằm trong một mặt phẳng. Gọi G, H lần lượt là giao điểm của hai đường chéo của hai hình bình hành đó. Chứng minh rằng ba đường thẳng GH, CE, DF đôi một song song.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Cho hai hình bình hành ABCD và ABEF không cùng nằm trong một mặt phẳng. Gọi G, H lần lượt là giao điểm của hai đường chéo (ảnh 1)

Vì G, H lần lượt là giao điểm của hai đường chéo của hai hình bình hành ABCD và ABEF nên G, H lần lượt là trung điểm của các đường chéo của mỗi hình bình hành.

Khi đó, GH là đường trung bình của hai tam giác ACE và BDF nên GH // CE và GH // DF. Vậy ba đường thẳng GH, CE, DF đôi một song song.

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a)

Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi M là một điểm bất kì thuộc cạnh SC. (ảnh 1)

Giao tuyến của mặt phẳng (MAB) với mặt phẳng (ABCD) là AB.

Giao tuyến của mặt phẳng (MAB) với mặt phẳng (SAB) là AB.

Giao tuyến của mặt phẳng (MAB) với mặt phẳng (SBC) là MB.

Trong mặt phẳng (SCD), vẽ MN // CD (N SD).

Mà AB // CD (do ABCD là hình bình hành) nên MN // AB // CD.

Do đó, N thuộc mặt phẳng (MAB) nên giao tuyến của của mặt phẳng (MAB) với mặt phẳng (SCD) là MN và giao tuyến của mặt phẳng (MAB) với mặt phẳng (SAD) là NA.

Lời giải

Cho hình chóp S.ABCD có đáy ABCD là hình thang (AB // CD). Gọi M, N lần lượt là các điểm thuộc các cạnh SA, SD. (ảnh 1)

a) Trong mặt phẳng (SAD), gọi P là giao điểm của AN và DM.

Khi đó, hai mặt phẳng (NAB) và (MCD) có điểm chung P và lần lượt chứa hai đường thẳng AB và CD song song với nhau nên giao tuyến của hai mặt phẳng này là đường thẳng đi qua P là song song với AB, CD.

Trong mặt phẳng (NAB), vẽ đường thẳng d đi qua P và song song với AB thì d là giao tuyến cần tìm.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay