Câu hỏi:
12/07/2024 5,152
Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Mặt phẳng (P) chứa đường thẳng AD và cắt hai cạnh SB, SC lần lượt tại E, F.
a) Xác định giao tuyến của hai mặt phẳng (EAB) và (FCD).
Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Mặt phẳng (P) chứa đường thẳng AD và cắt hai cạnh SB, SC lần lượt tại E, F.
a) Xác định giao tuyến của hai mặt phẳng (EAB) và (FCD).
Câu hỏi trong đề: Giải SBT Toán 11 KNTT Bài tập cuối chương 4 có đáp án !!
Quảng cáo
Trả lời:

a) Ta có hai đường thẳng EB và FC cắt nhau tại S nên S là một điểm chung của hai mặt phẳng (EAB) và (FCD).
Lại có hai mặt phẳng này lần lượt chứa hai đường thẳng AB và CD song song với nhau (do ABCD là hình bình hành).
Vậy giao tuyến là đường thẳng m qua S và song song với AB.
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Trọng tâm Hóa học 11 dùng cho cả 3 bộ sách Kết nối, Cánh diều, Chân trời sáng tạo VietJack - Sách 2025 ( 58.000₫ )
- Trọng tâm Sử, Địa, GD KTPL 11 cho cả 3 bộ Kết nối, Chân trời, Cánh diều VietJack - Sách 2025 ( 38.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án đúng là: B

Hai mặt phẳng (SAB) và (SCD) có điểm chung là S và lần lượt chứa hai đường thẳng AB, CD song song với nhau nên giao tuyến của chúng là đường thẳng d đi qua S và song song với CD.
Lời giải
Đáp án đúng là: B

Áp dụng định lý Thalès trong không gian, ta có .
Suy ra .
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.