Câu hỏi:

11/07/2024 935

Chứng minh trên đường tròn lượng giác gốc A, cung lượng giác \[\frac{{k2\pi }}{3}\] có các điểm biểu diễn tạo thành tam giác đều.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

• Với k = 1 Þ \[\frac{{k2\pi }}{3} = \frac{{2\pi }}{3}\] ta có điểm M

• Với k = 2 Þ \[\frac{{k2\pi }}{3} = \frac{{4\pi }}{3}\] ta có điểm N

• Với k = 3 Þ\[\frac{{k2\pi }}{3} = 2\pi \] ta có điểm A

• Với k = 4 Þ \[\frac{{k2\pi }}{3} = \frac{{8\pi }}{3}\] ta có điểm M

Tương tự với các giá trị khác của k ta cũng chỉ thu được 3 điểm M, N, A trên đường tròn lượng giác và ba điểm đó tạo thành một tam giác đều.

Vậy cung lượng giác \[\frac{{k2\pi }}{3}\] có các điểm biểu diễn tạo thành tam giác đều.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Từ đồ thị ta có: \[\mathop {\lim }\limits_{x \to + \infty } y = - \infty \Rightarrow a < 0\]

Gọi x1 và x2 lần lượt là hai điểm cực trị của hàm số đã cho (x1 < x2)

Từ đồ thị ta thấy: x1 + x2 > 0

Þ ab < 0 Þ b > 0

Lại có: x1.x2 > 0 Þ ac > 0 Þ c > 0

Đồ thị hàm số giao với trục tung tại điểm có tung độ y

Þ d > 0

Vậy trong các số a, b, c, d có 2 số dương.

Lời giải

Để \[A \cap B \ne \emptyset \] thì \[\left\{ \begin{array}{l}m + 1 \le 1\\m \ge 4\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}m \le 0\\m \ge 4\end{array} \right.\]

Vậy để \[A \cap B \ne \emptyset \] thì m Î (0; 4).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP