Câu hỏi:
25/09/2023 219Tìm m để đồ thị hàm số y = x3 − 3x2 + mx có hai điểm cực trị A và B đối xứng nhau qua đường thẳng x − 2y − 5 = 0.
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Áp dụng công thức giải nhanh, ta có phương trình đi qua hai điểm cực trị cần lập là \[{\rm{y}} = - \frac{2}{{9{\rm{a}}}}\left( {{{\rm{b}}^2} - 3ac} \right){\rm{x}} + d - \frac{{bc}}{{9a}}\]
Với a = 1; b = −3; a = 1; b = −3; c = m; d = 0
suy ra \[{\rm{y}} = - \frac{2}{9}\left( {9 - 3{\rm{m}}} \right){\rm{x}} + 0 + \frac{{3{\rm{m}}}}{9} = \frac{{m - 6}}{3} + \frac{m}{3}\] hay \[y = \frac{{m - 6}}{3}x + \frac{m}{3}\]
Do A và B đối xứng nhau qua đường thẳng x − 2y – 5 = 0.
Suy ra \[\frac{{{\rm{m}} - 6}}{3} \cdot \frac{1}{2} = - 1 \Leftrightarrow {\rm{m}} = 0.\]
Vậy m = 0.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho hàm số y = ax3 + bx2 + cx + d (a, b, c, d ∈ ℝ) có đồ thị là đường cong trong hình bên. Có bao nhiêu số dương trong các số a, b, c, d?
Câu 2:
Cho A = (m; m + 1); B = (1; 4). Tìm m để \[A \cap B \ne \emptyset \].
Câu 3:
Cho hai tập hợp A = [−2; 3] ; B = (m; m + 6). Tìm điều kiện để A ⊂ B.
Câu 4:
Cho \[\sin \alpha = \frac{2}{3}\]. Tính cos α, tan α biết 0 < α < 90º.
Câu 5:
Từ một miếng tôn có hình dạng là nửa hình tròn bán kính 1 m, người ta cắt ra một hình chữ nhật (phần tô đậm như hình vẽ). Tính diện tích lớn nhất có thể cắt được của phần hình chữ nhật.
Câu 6:
Tính các giá trị lượng giác còn lại của góc α biết \[\sin \,\alpha = \frac{1}{3}\] và 90° < α < 180°.
Câu 7:
Gieo đồng xu cân đối và đồng chất 5 lần liên tiếp. Tính xác suất để được ít nhất một lần xuất hiện mặt sấp.
về câu hỏi!