Câu hỏi:
25/09/2023 327Giá trị nhỏ nhất của biểu thức \[B = \sqrt {4{a^2} - 4a + 1} \; + \;\sqrt {4{a^2} - 12a + 9} \].
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Ta có \[B = \sqrt {4{a^2} - 4a + 1} \; + \;\sqrt {4{a^2} - 12a + 9} \]
\[ = \sqrt {{{\left( {2a - 1} \right)}^2}} \; + \;\sqrt {{{\left( {2a - 3} \right)}^2}} \]
\[ = \left| {2a - 1} \right| + \left| {2a - 3} \right|\].
Ta có \[\left| {2a - 1} \right| + \left| {2a - 3} \right| = \left| {2a - 1} \right| + \left| {3 - 2a} \right| \ge \left| {2a - 1 + 3 - 2a} \right| = 2\]
Dấu “=” xảy ra khi 2a – 1 = 3 – 2a
Û 4a = 4 Û a = 1
Vậy giá trị nhỏ nhất của B là 2 với a = 1.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho hàm số y = ax3 + bx2 + cx + d (a, b, c, d ∈ ℝ) có đồ thị là đường cong trong hình bên. Có bao nhiêu số dương trong các số a, b, c, d?
Câu 2:
Cho A = (m; m + 1); B = (1; 4). Tìm m để \[A \cap B \ne \emptyset \].
Câu 3:
Cho hai tập hợp A = [−2; 3] ; B = (m; m + 6). Tìm điều kiện để A ⊂ B.
Câu 4:
Cho \[\sin \alpha = \frac{2}{3}\]. Tính cos α, tan α biết 0 < α < 90º.
Câu 5:
Từ một miếng tôn có hình dạng là nửa hình tròn bán kính 1 m, người ta cắt ra một hình chữ nhật (phần tô đậm như hình vẽ). Tính diện tích lớn nhất có thể cắt được của phần hình chữ nhật.
Câu 6:
Tính các giá trị lượng giác còn lại của góc α biết \[\sin \,\alpha = \frac{1}{3}\] và 90° < α < 180°.
Câu 7:
Gieo đồng xu cân đối và đồng chất 5 lần liên tiếp. Tính xác suất để được ít nhất một lần xuất hiện mặt sấp.
về câu hỏi!