Câu hỏi:
25/09/2023 107Rút gọn biểu thức:
\[A = \frac{{x - 2\sqrt x }}{{x\sqrt x - 1}} + \frac{{\sqrt x + 1}}{{x\sqrt x + x + \sqrt x }} + \frac{{1 + 2x - 2\sqrt x }}{{{x^2} - \sqrt x }}\] (x > 0, x ¹ 1)
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
\[A = \frac{{x - 2\sqrt x }}{{x\sqrt x - 1}} + \frac{{\sqrt x + 1}}{{x\sqrt x + x + \sqrt x }} + \frac{{1 + 2x - 2\sqrt x }}{{{x^2} - \sqrt x }}\] (x > 0, x ¹ 1)
\[ = \frac{{x - 2\sqrt x }}{{x\sqrt x - 1}} + \frac{{\sqrt x + 1}}{{x\sqrt x + x + \sqrt x }} + \frac{{1 + 2x - 2\sqrt x }}{{\sqrt x \left( {x\sqrt x - 1} \right)}}\]
\[ = \frac{{x - 2\sqrt x }}{{\left( {\sqrt x - 1} \right)\left( {x + \sqrt x + 1} \right)}} + \frac{{\sqrt x + 1}}{{\sqrt x \left( {x + \sqrt x + 1} \right)}} + \frac{{1 + 2x - 2\sqrt x }}{{\sqrt x \left( {\sqrt x - 1} \right)\left( {x + \sqrt x + 1} \right)}}\]
\[ = \frac{{\sqrt x \left( {x - 2\sqrt x } \right)}}{{\sqrt x \left( {\sqrt x - 1} \right)\left( {x + \sqrt x + 1} \right)}} + \frac{{\left( {\sqrt x - 1} \right)\left( {\sqrt x + 1} \right)}}{{\sqrt x \left( {\sqrt x - 1} \right)\left( {x + \sqrt x + 1} \right)}} + \frac{{1 + 2x - 2\sqrt x }}{{\sqrt x \left( {\sqrt x - 1} \right)\left( {x + \sqrt x + 1} \right)}}\]
\[ = \frac{{x\sqrt x - 2x + x - 1 + 1 + 2x - 2\sqrt x }}{{\sqrt x \left( {\sqrt x - 1} \right)\left( {x + \sqrt x + 1} \right)}}\]
\[ = \frac{{x\sqrt x + x - 2\sqrt x }}{{\sqrt x \left( {\sqrt x - 1} \right)\left( {x + \sqrt x + 1} \right)}}\]
\[ = \frac{{\sqrt x \left( {x + \sqrt x - 2} \right)}}{{\sqrt x \left( {\sqrt x - 1} \right)\left( {x + \sqrt x + 1} \right)}}\]
\[ = \frac{{\sqrt x \left( {\sqrt x - 1} \right)\left( {\sqrt x + 2} \right)}}{{\sqrt x \left( {\sqrt x - 1} \right)\left( {x + \sqrt x + 1} \right)}}\]
\[ = \frac{{\sqrt x + 2}}{{x + \sqrt x + 1}}\]
Vậy \[A = \frac{{\sqrt x + 2}}{{x + \sqrt x + 1}}\].
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho hàm số y = ax3 + bx2 + cx + d (a, b, c, d ∈ ℝ) có đồ thị là đường cong trong hình bên. Có bao nhiêu số dương trong các số a, b, c, d?
Câu 2:
Cho A = (m; m + 1); B = (1; 4). Tìm m để \[A \cap B \ne \emptyset \].
Câu 3:
Cho hai tập hợp A = [−2; 3] ; B = (m; m + 6). Tìm điều kiện để A ⊂ B.
Câu 4:
Cho \[\sin \alpha = \frac{2}{3}\]. Tính cos α, tan α biết 0 < α < 90º.
Câu 5:
Từ một miếng tôn có hình dạng là nửa hình tròn bán kính 1 m, người ta cắt ra một hình chữ nhật (phần tô đậm như hình vẽ). Tính diện tích lớn nhất có thể cắt được của phần hình chữ nhật.
Câu 6:
Tính các giá trị lượng giác còn lại của góc α biết \[\sin \,\alpha = \frac{1}{3}\] và 90° < α < 180°.
Câu 7:
Gieo đồng xu cân đối và đồng chất 5 lần liên tiếp. Tính xác suất để được ít nhất một lần xuất hiện mặt sấp.
về câu hỏi!