Câu hỏi:

25/09/2023 366 Lưu

Rút gọn biểu thức:

\[A = \frac{{x - 2\sqrt x }}{{x\sqrt x - 1}} + \frac{{\sqrt x + 1}}{{x\sqrt x + x + \sqrt x }} + \frac{{1 + 2x - 2\sqrt x }}{{{x^2} - \sqrt x }}\] (x > 0, x ¹ 1)

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

\[A = \frac{{x - 2\sqrt x }}{{x\sqrt x - 1}} + \frac{{\sqrt x + 1}}{{x\sqrt x + x + \sqrt x }} + \frac{{1 + 2x - 2\sqrt x }}{{{x^2} - \sqrt x }}\] (x > 0, x ¹ 1)

\[ = \frac{{x - 2\sqrt x }}{{x\sqrt x - 1}} + \frac{{\sqrt x + 1}}{{x\sqrt x + x + \sqrt x }} + \frac{{1 + 2x - 2\sqrt x }}{{\sqrt x \left( {x\sqrt x - 1} \right)}}\]

\[ = \frac{{x - 2\sqrt x }}{{\left( {\sqrt x - 1} \right)\left( {x + \sqrt x + 1} \right)}} + \frac{{\sqrt x + 1}}{{\sqrt x \left( {x + \sqrt x + 1} \right)}} + \frac{{1 + 2x - 2\sqrt x }}{{\sqrt x \left( {\sqrt x - 1} \right)\left( {x + \sqrt x + 1} \right)}}\]

\[ = \frac{{\sqrt x \left( {x - 2\sqrt x } \right)}}{{\sqrt x \left( {\sqrt x - 1} \right)\left( {x + \sqrt x + 1} \right)}} + \frac{{\left( {\sqrt x - 1} \right)\left( {\sqrt x + 1} \right)}}{{\sqrt x \left( {\sqrt x - 1} \right)\left( {x + \sqrt x + 1} \right)}} + \frac{{1 + 2x - 2\sqrt x }}{{\sqrt x \left( {\sqrt x - 1} \right)\left( {x + \sqrt x + 1} \right)}}\]

\[ = \frac{{x\sqrt x - 2x + x - 1 + 1 + 2x - 2\sqrt x }}{{\sqrt x \left( {\sqrt x - 1} \right)\left( {x + \sqrt x + 1} \right)}}\]

\[ = \frac{{x\sqrt x + x - 2\sqrt x }}{{\sqrt x \left( {\sqrt x - 1} \right)\left( {x + \sqrt x + 1} \right)}}\]

\[ = \frac{{\sqrt x \left( {x + \sqrt x - 2} \right)}}{{\sqrt x \left( {\sqrt x - 1} \right)\left( {x + \sqrt x + 1} \right)}}\]

\[ = \frac{{\sqrt x \left( {\sqrt x - 1} \right)\left( {\sqrt x + 2} \right)}}{{\sqrt x \left( {\sqrt x - 1} \right)\left( {x + \sqrt x + 1} \right)}}\]

\[ = \frac{{\sqrt x + 2}}{{x + \sqrt x + 1}}\]

Vậy \[A = \frac{{\sqrt x + 2}}{{x + \sqrt x + 1}}\].

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Từ đồ thị ta có: \[\mathop {\lim }\limits_{x \to + \infty } y = - \infty \Rightarrow a < 0\]

Gọi x1 và x2 lần lượt là hai điểm cực trị của hàm số đã cho (x1 < x2)

Từ đồ thị ta thấy: x1 + x2 > 0

Þ ab < 0 Þ b > 0

Lại có: x1.x2 > 0 Þ ac > 0 Þ c > 0

Đồ thị hàm số giao với trục tung tại điểm có tung độ y

Þ d > 0

Vậy trong các số a, b, c, d có 2 số dương.

Lời giải

Để \[A \cap B \ne \emptyset \] thì \[\left\{ \begin{array}{l}m + 1 \le 1\\m \ge 4\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}m \le 0\\m \ge 4\end{array} \right.\]

Vậy để \[A \cap B \ne \emptyset \] thì m Î (0; 4).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP