Câu hỏi:

25/09/2023 130

Cho lăng trụ đứng ABC.A'B'C' có chiều cao bằng 4, đáy ABC là tam giác cân tại A với AB = AC = 2; \[\widehat {BAC} = 120^\circ \]. Tính bán kính mặt cầu ngoại tiếp lăng trụ trên.

Sách mới 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 110k).

20 đề Toán 20 đề Văn Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Cho lăng trụ đứng ABC.A'B'C' có chiều cao bằng 4, đáy ABC là tam giác cân tại  (ảnh 1)

Gọi M là trung điểm của BC, H là điểm đối xứng với A qua M.

Xét tứ giác ABHC có hai đường chéo cắt nhau tại trung điểm mỗi đường và AM BC

Þ AH BC (do tam giác ABC cân tại A) nên ABHC là hình thoi 

Þ HB = HC.

Xét tam giác ABH có AB = BH, \[\widehat {BAH} = \frac{1}{2}\widehat {BAC} = 60^\circ \]nên là tam giác đều, do đó HA = HB.

Suy ra HA = HB = HC hay H là tâm đường tròn ngoại tiếp tam giác ABC.

Gọi H’ là hình chiếu của A lên (A’B’C’) thì H’ chính là tâm đường tròn ngoại tiếp tam giác A’B’C’, khi đó HH’ là trục của khối lăng trụ đứng.

Gọi I là trung điểm của HH’, ta có IA = IB = IC, IA’ = IB’ = IC’.

Xét tam giác vuông AHI và tam giác vuông A’H’I có:

HI = H’I (I là trung điểm của HH’)

AH = A’H’

\[\widehat {AHI} = \widehat {A'H'I'} = 90^\circ \]

Þ ΔAHI = ΔA′H′I (c.g.c) 

Þ IA = IA′

Do đó IA = IB = IC = IA’ = IB’ = IC’ hay I chính là tâm mặt cầu ngoại tiếp khối lăng trụ đứng ABC.A’B’C’.

Ta có AH = AB = 2 (do ABHC là hình thoi) và HH’ = AA’ = 4 nên IH = 2.

Áp dụng định lí Py-ta-go trong tam giác vuông AHI, ta có:

\[AI = \sqrt {A{H^2} + H{I^2}} = \sqrt {{2^2} + {2^2}} = 2\sqrt 2 \]

Vậy bán kính mặt cầu ngoại tiếp khối lăng trụ là \[R = 2\sqrt 2 \].

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho hàm số y = ax3 + bx2 + cx + d (a, b, c, d ℝ) có đồ thị là đường cong trong hình bên. Có bao nhiêu số dương trong các số a, b, c, d?

Cho hàm số y = ax^3 + bx^2 + cx + d (a, b, c, d thuộc R) có đồ thị là đường cong trong  (ảnh 1)

Xem đáp án » 11/07/2024 33,749

Câu 2:

Cho A = (m; m + 1); B = (1; 4). Tìm m để \[A \cap B \ne \emptyset \].

Xem đáp án » 11/07/2024 22,322

Câu 3:

Cho hai tập hợp A = [2; 3] ; B = (m; m + 6). Tìm điều kiện để A B.

Xem đáp án » 11/07/2024 16,631

Câu 4:

Cho \[\sin \alpha = \frac{2}{3}\]. Tính cos α, tan α biết 0 < α < 90º.

Xem đáp án » 11/07/2024 16,039

Câu 5:

Từ một miếng tôn có hình dạng là nửa hình tròn bán kính 1 m, người ta cắt ra một hình chữ nhật (phần tô đậm như hình vẽ). Tính diện tích lớn nhất có thể cắt được của phần hình chữ nhật.

Từ một miếng tôn có hình dạng là nửa hình tròn bán kính 1 m, người ta cắt ra một (ảnh 1)

Xem đáp án » 11/07/2024 15,362

Câu 6:

Tính các giá trị lượng giác còn lại của góc α biết \[\sin \,\alpha = \frac{1}{3}\] và 90° < α < 180°.

Xem đáp án » 11/07/2024 13,206

Câu 7:

Gieo đồng xu cân đối và đồng chất 5 lần liên tiếp. Tính xác suất để được ít nhất một lần xuất hiện mặt sấp.

Xem đáp án » 11/07/2024 9,625

Bình luận


Bình luận
Đăng ký gói thi VIP

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

Vietjack official store