Câu hỏi:

25/09/2023 178

Cho lăng trụ đứng ABC.A'B'C' có chiều cao bằng 4, đáy ABC là tam giác cân tại A với AB = AC = 2; \[\widehat {BAC} = 120^\circ \]. Tính bán kính mặt cầu ngoại tiếp lăng trụ trên.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Cho lăng trụ đứng ABC.A'B'C' có chiều cao bằng 4, đáy ABC là tam giác cân tại  (ảnh 1)

Gọi M là trung điểm của BC, H là điểm đối xứng với A qua M.

Xét tứ giác ABHC có hai đường chéo cắt nhau tại trung điểm mỗi đường và AM BC

Þ AH BC (do tam giác ABC cân tại A) nên ABHC là hình thoi 

Þ HB = HC.

Xét tam giác ABH có AB = BH, \[\widehat {BAH} = \frac{1}{2}\widehat {BAC} = 60^\circ \]nên là tam giác đều, do đó HA = HB.

Suy ra HA = HB = HC hay H là tâm đường tròn ngoại tiếp tam giác ABC.

Gọi H’ là hình chiếu của A lên (A’B’C’) thì H’ chính là tâm đường tròn ngoại tiếp tam giác A’B’C’, khi đó HH’ là trục của khối lăng trụ đứng.

Gọi I là trung điểm của HH’, ta có IA = IB = IC, IA’ = IB’ = IC’.

Xét tam giác vuông AHI và tam giác vuông A’H’I có:

HI = H’I (I là trung điểm của HH’)

AH = A’H’

\[\widehat {AHI} = \widehat {A'H'I'} = 90^\circ \]

Þ ΔAHI = ΔA′H′I (c.g.c) 

Þ IA = IA′

Do đó IA = IB = IC = IA’ = IB’ = IC’ hay I chính là tâm mặt cầu ngoại tiếp khối lăng trụ đứng ABC.A’B’C’.

Ta có AH = AB = 2 (do ABHC là hình thoi) và HH’ = AA’ = 4 nên IH = 2.

Áp dụng định lí Py-ta-go trong tam giác vuông AHI, ta có:

\[AI = \sqrt {A{H^2} + H{I^2}} = \sqrt {{2^2} + {2^2}} = 2\sqrt 2 \]

Vậy bán kính mặt cầu ngoại tiếp khối lăng trụ là \[R = 2\sqrt 2 \].

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Từ đồ thị ta có: \[\mathop {\lim }\limits_{x \to + \infty } y = - \infty \Rightarrow a < 0\]

Gọi x1 và x2 lần lượt là hai điểm cực trị của hàm số đã cho (x1 < x2)

Từ đồ thị ta thấy: x1 + x2 > 0

Þ ab < 0 Þ b > 0

Lại có: x1.x2 > 0 Þ ac > 0 Þ c > 0

Đồ thị hàm số giao với trục tung tại điểm có tung độ y

Þ d > 0

Vậy trong các số a, b, c, d có 2 số dương.

Lời giải

Để \[A \cap B \ne \emptyset \] thì \[\left\{ \begin{array}{l}m + 1 \le 1\\m \ge 4\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}m \le 0\\m \ge 4\end{array} \right.\]

Vậy để \[A \cap B \ne \emptyset \] thì m Î (0; 4).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay