Câu hỏi:

25/09/2023 612 Lưu

Giải phương trình: \[{x^2} + 6x + 1 = (2x + 1)\sqrt {{x^2} + 2x + 3} \].

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Điều kiện: x2 + 2x + 3 ≥ 0

\[{x^2} + 6x + 1 = (2x + 1)\sqrt {{x^2} + 2x + 3} \]

\[ \Leftrightarrow {x^2} + 2x + 3 + 4x + 2 = (2x + 1)\sqrt {{x^2} + 2x + 3} \]

Đặt \[a = \sqrt {{x^2} + 2x + 3} \]; b = 2x +1, phương trình trở thành:

a2 + 2b = ab + 4

a2 − 4− ab + 2b = 0

(a − 2)(a + 2) − b(a − 2) = 0

(a − 2)(a – b + 2) = 0

\[ \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{a = 2\,\,\,\,\,\,\,\,\,\,\,}\\{a - b = - 2}\end{array}} \right.\].

Với a = 2 \[ \Leftrightarrow \sqrt {{x^2} + 2x + 3} = 2\]

Û x2 + 2x – 1 = 0

\[ \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{x = \sqrt 2 - 1\,\,(tm)}\\{x = - \sqrt 2 - 1\,\,(tm)}\end{array}} \right.\]

Với a – b = −2\[ \Leftrightarrow \sqrt {{x^2} + 2x + 3} - (2x + 1) = - 2\]

\[ \Leftrightarrow \sqrt {{x^2} + 2x + 3} = 2x - 1\]

x2 + 2x+ 3 = 4x2 − 4x + 1

3x2 − 6x − 2 =0

\[ \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{x = \frac{{3 + \sqrt {15} }}{3}(tm)}\\{x = \frac{{3 - \sqrt {15} }}{3}\,\,(tm)}\end{array}} \right.\]

Vậy tập hợp giá trị x thỏa mãn là: \[S = \left\{ { - 1 \pm \sqrt 2 ;\frac{{3 \pm \sqrt {15} }}{3}} \right\}\].

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Từ đồ thị ta có: \[\mathop {\lim }\limits_{x \to + \infty } y = - \infty \Rightarrow a < 0\]

Gọi x1 và x2 lần lượt là hai điểm cực trị của hàm số đã cho (x1 < x2)

Từ đồ thị ta thấy: x1 + x2 > 0

Þ ab < 0 Þ b > 0

Lại có: x1.x2 > 0 Þ ac > 0 Þ c > 0

Đồ thị hàm số giao với trục tung tại điểm có tung độ y

Þ d > 0

Vậy trong các số a, b, c, d có 2 số dương.

Lời giải

Để \[A \cap B \ne \emptyset \] thì \[\left\{ \begin{array}{l}m + 1 \le 1\\m \ge 4\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}m \le 0\\m \ge 4\end{array} \right.\]

Vậy để \[A \cap B \ne \emptyset \] thì m Î (0; 4).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP