Câu hỏi:

25/09/2023 458

Một xưởng sản xuất hai loại sản phẩm, mỗi kg sản phẩm loại I cần 2 kg nguyên liệu và 30 giờ, đem lại mức lời 40 000 đồng. Mỗi kg sản phẩm loại II cần 4 kg nguyên liệu và 15 giờ, đem lại mức lời 30 000 đồng. Xưởng có 200 kg nguyên liệu và 1200 giờ làm việc. Nên sản xuất mỗi loại sản phẩm lần lượt là bao nhiêu để có mức lời cao nhất?

Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).

Tổng ôn toán Tổng ôn lý Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Gọi x (x ≥ 0 )  là số kg loại I cần sản xuất, y (y ≥ 0 ) là số kg loại II cần sản xuất.

Þ Số nguyên liệu cần dùng là: 2x + 4y

Thời gian làm việc là: 30x + 15y

Mức lời thu được là: 40.000x + 30.000y

Theo giả thiết bài toán xưởng có 200 kg nguyên liệu và 1200 giờ làm việc

Þ 2x + 4y ≤ 200 hay x + 2y – 100 ≤ 0

 30x+ 15y ≤ 1200 hay 2x + y – 80 ≤ 0

Ta có hệ phương trình: \[\left\{ \begin{array}{l}x + 2y \le 100\\2x + y \le 80\end{array} \right.\]   (*)

Cần tìm giá trị x, y sao cho L(x; y) = 40.000x + 30.000y đạt giá trị lớn nhất.

Trong mặt phẳng tọa độ vẽ các đường thẳng (d) : x + 2y – 100 = 0 và (d’) : 2x + y – 80 = 0

Một xưởng sản xuất hai loại sản phẩm, mỗi kg sản phẩm loại I cần 2 kg nguyên liệu (ảnh 1)

Khi đó miền nghiệm của hệ bất phương trình (*) là phần mặt phẳng (tứ giác) không tô màu trên hình vẽ

Giá trị lớn nhất của L(x; y) đạt tại một trong các điểm là: (0; 0); (40; 0); (0; 50); (20;40)

Ta có:

L(0; 0) = 0;

L(40; 0) = 1 600 000;

L(0; 50) = 1 500 000;

L(20; 40) =  2 000 000.

Þ Giá trị lớn nhất của L(x; y)  là 2 000 000 khi (x; y) = (20; 40).

Vậy cần sản xuất 20 kg sản phẩm loại I và 40 kg sản phẩm loại II để có mức lời lớn nhất.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho hàm số y = ax3 + bx2 + cx + d (a, b, c, d ℝ) có đồ thị là đường cong trong hình bên. Có bao nhiêu số dương trong các số a, b, c, d?

Cho hàm số y = ax^3 + bx^2 + cx + d (a, b, c, d thuộc R) có đồ thị là đường cong trong  (ảnh 1)

Xem đáp án » 11/07/2024 28,208

Câu 2:

Cho A = (m; m + 1); B = (1; 4). Tìm m để \[A \cap B \ne \emptyset \].

Xem đáp án » 11/07/2024 18,696

Câu 3:

Cho hai tập hợp A = [2; 3] ; B = (m; m + 6). Tìm điều kiện để A B.

Xem đáp án » 11/07/2024 15,335

Câu 4:

Cho \[\sin \alpha = \frac{2}{3}\]. Tính cos α, tan α biết 0 < α < 90º.

Xem đáp án » 11/07/2024 13,403

Câu 5:

Từ một miếng tôn có hình dạng là nửa hình tròn bán kính 1 m, người ta cắt ra một hình chữ nhật (phần tô đậm như hình vẽ). Tính diện tích lớn nhất có thể cắt được của phần hình chữ nhật.

Từ một miếng tôn có hình dạng là nửa hình tròn bán kính 1 m, người ta cắt ra một (ảnh 1)

Xem đáp án » 11/07/2024 12,418

Câu 6:

Tính các giá trị lượng giác còn lại của góc α biết \[\sin \,\alpha = \frac{1}{3}\] và 90° < α < 180°.

Xem đáp án » 11/07/2024 12,097

Câu 7:

Gieo đồng xu cân đối và đồng chất 5 lần liên tiếp. Tính xác suất để được ít nhất một lần xuất hiện mặt sấp.

Xem đáp án » 11/07/2024 9,529

Bình luận


Bình luận
Đăng ký gói thi VIP

VIP 1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 2 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 3 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 4 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

Vietjack official store