Câu hỏi:
11/07/2024 719
Cho phương trình: x2 – 4x + m = 0. Tìm m để phương trình có 2 nghiệm phân biệt x1, x2 thỏa mãn: x13 + x23 – 5(x12 + x22) = 26.
Cho phương trình: x2 – 4x + m = 0. Tìm m để phương trình có 2 nghiệm phân biệt x1, x2 thỏa mãn: x13 + x23 – 5(x12 + x22) = 26.
Quảng cáo
Trả lời:
x2 – 4x + m = 0
Δ = (−4)2 − 4.1.m = 16 − 4m
Để phương trình có 2 nghiệm phân biệt thì
16 − 4m > 0 ⇔ −4m > −16 ⇔ m < 4
Theo hệ thức Vi-et, ta có: \[\left\{ {\begin{array}{*{20}{c}}{{x_1} + {x_2} = 4}\\{{x_1}.{x_2} = m}\end{array}} \right.\]
Ta có: x13 + x23 − 5(x12 + x22) = 26
⇔(x1 + x2)3 − 3x1x2(x1 + x2) − 5[(x1 + x2)2 − 2x1x2] = 26
⇔ 43 − 3.m.4 – 5(42 − 2m) = 26
⇔ 64 − 12m – 80 + 10m = 26
⇔ −2m = −18
⇔ m = 9 (không thỏa mãn)
Vậy không có giá trị m để phương trình có 2 nghiệm phân biệt x1, x2 thỏa mãn đề bài.
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Từ đồ thị ta có: \[\mathop {\lim }\limits_{x \to + \infty } y = - \infty \Rightarrow a < 0\]
Gọi x1 và x2 lần lượt là hai điểm cực trị của hàm số đã cho (x1 < x2)
Từ đồ thị ta thấy: x1 + x2 > 0
Þ ab < 0 Þ b > 0
Lại có: x1.x2 > 0 Þ ac > 0 Þ c > 0
Đồ thị hàm số giao với trục tung tại điểm có tung độ y
Þ d > 0
Vậy trong các số a, b, c, d có 2 số dương.
Lời giải
Để \[A \cap B \ne \emptyset \] thì \[\left\{ \begin{array}{l}m + 1 \le 1\\m \ge 4\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}m \le 0\\m \ge 4\end{array} \right.\]
Vậy để \[A \cap B \ne \emptyset \] thì m Î (0; 4).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.