Câu hỏi:

25/09/2023 223 Lưu

Cho nửa đường tròn tâm O bán kính R đường kính AB. Gọi Ax, By là các tia tiếp tuyến của nửa đường tròn và thuộc cùng 1 nửa mặt phẳng có chứa nửa đường tròn. Qua M thuộc nửa đường tròn vẽ tiếp tuyến với nửa đường tròn cắt Ax, By lần lượt tại C, D. Chứng minh rằng AC. BD = R2.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Cho nửa đường tròn tâm O bán kính R đường kính AB. Gọi Ax, By là các tia tiếp (ảnh 1)

Ta có: \[{\widehat O_1} = {\widehat O_2}\] (tính chất 2 tiếp tuyến cắt nhau)

và \[{\widehat O_3} = {\widehat O_4}\] (tính chất 2 tiếp tuyến cắt nhau)

\[ \Rightarrow \widehat {COD} = {\widehat O_2} + {\widehat O_3} = \frac{1}{2}\left( {{{\widehat O}_1} + {{\widehat O}_2} + {{\widehat O}_3} + {{\widehat O}_4}} \right) = 90^\circ \]

Þ ΔCOD vuông tại O, có đường cao OM

Do CA và CM là hai tiếp tuyến cắt nhau nên CA = CM

Do DM và DB là hai tiếp tuyến cắt nhau nên DM = DB

Áp dụng hệ thức lượng ta có:

OM2 = CM. MD

Þ R2 = CA. DB (đpcm)

Vậy AC. BD = R2.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Từ đồ thị ta có: \[\mathop {\lim }\limits_{x \to + \infty } y = - \infty \Rightarrow a < 0\]

Gọi x1 và x2 lần lượt là hai điểm cực trị của hàm số đã cho (x1 < x2)

Từ đồ thị ta thấy: x1 + x2 > 0

Þ ab < 0 Þ b > 0

Lại có: x1.x2 > 0 Þ ac > 0 Þ c > 0

Đồ thị hàm số giao với trục tung tại điểm có tung độ y

Þ d > 0

Vậy trong các số a, b, c, d có 2 số dương.

Lời giải

Để \[A \cap B \ne \emptyset \] thì \[\left\{ \begin{array}{l}m + 1 \le 1\\m \ge 4\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}m \le 0\\m \ge 4\end{array} \right.\]

Vậy để \[A \cap B \ne \emptyset \] thì m Î (0; 4).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP