Tìm m để hệ phương trình sau vô số nghiệm:
\[\left\{ \begin{array}{l}2x + my = m + 2\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,(1)\\(m + 1)x + 2my = 2m + 4\,\,\,\,\,\,\,(2)\end{array} \right.\]
Tìm m để hệ phương trình sau vô số nghiệm:
\[\left\{ \begin{array}{l}2x + my = m + 2\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,(1)\\(m + 1)x + 2my = 2m + 4\,\,\,\,\,\,\,(2)\end{array} \right.\]
Quảng cáo
Trả lời:
\[\left\{ \begin{array}{l}2x + my = m + 2\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,(1)\\(m + 1)x + 2my = 2m + 4\,\,\,\,\,\,\,(2)\end{array} \right.\]
\[ \Leftrightarrow \left\{ \begin{array}{l}x = \frac{1}{2}\left( {m + 2 - my} \right)\,\,\\\frac{1}{2}\left( {m + 2 - my} \right)(m + 1) + 2my = 2m + 4\,\,\end{array} \right.\]
\[ \Leftrightarrow \left\{ \begin{array}{l}x = \frac{1}{2}\left( {m + 2 - my} \right)\,\,\\m(m - 3)y = (m - 3)(m + 2)\,\,\end{array} \right.\]
Để hệ có vô số nghiệm khi phương trình m(m − 3)y = (m − 3)(m + 2) có vô số nghiệm
\[ \Rightarrow \left\{ \begin{array}{l}m(m - 3) = 0\,\,\\(m - 3)(m + 2) = 0\,\,\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}\left[ \begin{array}{l}m = 0\\m = 3\end{array} \right.\\\left[ \begin{array}{l}m = - 2\\m = 3\end{array} \right.\end{array} \right.\]Þ m = 3
Vậy với m = 3 thì hệ phương trình sau vô số nghiệm.
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Từ đồ thị ta có: \[\mathop {\lim }\limits_{x \to + \infty } y = - \infty \Rightarrow a < 0\]
Gọi x1 và x2 lần lượt là hai điểm cực trị của hàm số đã cho (x1 < x2)
Từ đồ thị ta thấy: x1 + x2 > 0
Þ ab < 0 Þ b > 0
Lại có: x1.x2 > 0 Þ ac > 0 Þ c > 0
Đồ thị hàm số giao với trục tung tại điểm có tung độ y
Þ d > 0
Vậy trong các số a, b, c, d có 2 số dương.
Lời giải
Để \[A \cap B \ne \emptyset \] thì \[\left\{ \begin{array}{l}m + 1 \le 1\\m \ge 4\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}m \le 0\\m \ge 4\end{array} \right.\]
Vậy để \[A \cap B \ne \emptyset \] thì m Î (0; 4).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.