Câu hỏi:
11/07/2024 1,300Trong một cuộc thi pha chế, mỗi đội chơi được sử dụng tối đa 24g hương liệu, 9 lít nước và 210g đường để pha chế nước cam và nước táo.
+ Để pha chế 1 lít nước cam cần 30g đường, 1 lít nước và 1g hương liệu;
+ Để pha chế 1 lít nước táo cần 10g đường, 1 lít nước và 4g hương liệu.
Mỗi lít nước cam nhận được 60 điểm thưởng, mỗi lít nước táo nhận được 80 điểm thưởng. Hỏi cần pha chế bao nhiêu lít nước trái cây mỗi loại để đạt được số điểm thưởng cao nhất?
Quảng cáo
Trả lời:
Giả sử x, y lần lượt là số lít nước cam và số lít nước táo mà mỗi đội cần pha chế
(x, y ≥ 0)
Suy ra 30x + 10y là số gam đường cần dùng;
x + y là số lít nước cần dùng;
x + 4y là số gam hương liệu cần dùng
Theo giả thiết ta có:
\[\left\{ \begin{array}{l}30x + 10y \le 210\\x + y \le 9\\x + 4y \le 24\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}3x + 1y \le 21\\x + y \le 9\\x + 4y \le 24\end{array} \right.\]
Theo bài số điểm thưởng nhận được sẽ là P(x;y) = 60x + 80y.
Ta đi tìm giá trị nhỏ nhất của biểu thức P với x, y thỏa mãn hệ bất phương trình.
Miền nghiệm là phần hình vẽ không tô màu ở hình trên hay là ngũ giác OBCDE với O(0; 0), B(0 ;6), C(4; 5), D(6; 3), E(7; 0).
Biểu thức P = 60x + 80y đạt GTLN tại (x;y) là tọa độ một trong các đỉnh của ngũ giác.
Thay lần lượt tọa độ các điểm O, B, C, D, E vào biểu thức P(x; y) ta được:
P(0; 0) = 0; P(0; 6) = 480; P(4; 5) = 640; P(6; 3) = 600; P(7; 0) = 420
Vậy cần pha chế 4 lít nước cam và 5 lít nước táo để đạt được số điểm thưởng cao nhất là 640.
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho hàm số y = ax3 + bx2 + cx + d (a, b, c, d ∈ ℝ) có đồ thị là đường cong trong hình bên. Có bao nhiêu số dương trong các số a, b, c, d?
Câu 2:
Cho A = (m; m + 1); B = (1; 4). Tìm m để \[A \cap B \ne \emptyset \].
Câu 3:
Từ một miếng tôn có hình dạng là nửa hình tròn bán kính 1 m, người ta cắt ra một hình chữ nhật (phần tô đậm như hình vẽ). Tính diện tích lớn nhất có thể cắt được của phần hình chữ nhật.
Câu 4:
Cho hai tập hợp A = [−2; 3] ; B = (m; m + 6). Tìm điều kiện để A ⊂ B.
Câu 5:
Cho \[\sin \alpha = \frac{2}{3}\]. Tính cos α, tan α biết 0 < α < 90º.
Câu 6:
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh bằng a, SA ⊥ (ABCD), \[SA = a\sqrt 3 \]. Gọi M là trung điểm của SD. Tính khoảng cách giữa hai đường thẳng AB và CM.
Câu 7:
Tính các giá trị lượng giác còn lại của góc α biết \[\sin \,\alpha = \frac{1}{3}\] và 90° < α < 180°.
5920 câu Trắc nghiệm tổng hợp môn Toán 2023 có đáp án (Phần 1)
135 câu Bài tập Hình học mặt nón, mặt trụ, mặt cầu cực hay có lời giải (P1)
80 câu Trắc nghiệm Tích phân có đáp án (Phần 1)
80 câu Bài tập Hình học Khối đa diện có lời giải chi tiết (P1)
148 câu Bài tập Hình học mặt nón, mặt trụ, mặt cầu từ đề thi Đại học có lời giải (P1)
15 câu Trắc nghiệm Số phức có đáp án (Vận dụng)
7 câu Trắc nghiệm Khối đa diện lồi và khối đa diện đều có đáp án (Vận dụng)
20 câu Trắc nghiệm Phương trình đường thẳng trong không gian có đáp án (Nhận biết)
Hãy Đăng nhập hoặc Tạo tài khoản để gửi bình luận