Câu hỏi:

11/07/2024 14,184 Lưu

Cho hình chóp S.ABCD có đáy là hình vuông cạnh bằng 2a. Tam giác SAB cân tại S và nằm trong mặt phẳng vuông góc với mặt đáy. Biết thể tích khối chóp S.ABCD bằng \[\frac{{4{a^3}}}{3}\]. Gọi α là góc giữa SC và mặt đáy. Tính tan α.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Cho hình chóp S.ABCD có đáy là hình vuông cạnh bằng 2a. Tam giác (ảnh 1)

Gọi H là trung điểm của AB

Þ SH AB (do ΔSAB cân tại S)

Ta có: (SAB) (ABCD)

(SAB) ∩ (ABCD) = AB

SH AB; SH (SAB)

Þ SH (ABCD)

Hay H là hình chiếu của S lên mặt phẳng (ABCD)

Þ CH là hình chiếu của SC lên mặt phẳng (ABCD)

Do đó góc giữa SC và mặt đáy là \[\widehat {SCH} = \alpha \].

Ta có:

\[{V_{S.ABCD}} = \frac{1}{3}SH.{S_{ABCD}}\]

\[ \Leftrightarrow \frac{{4{a^3}}}{3} = \frac{1}{3}SH.4{a^2} \Leftrightarrow SH = a\]

Xét tam giác BHC vuông tại B, theo định lý Py-ta-go, ta có:

\[HC = \sqrt {B{H^2} + B{C^2}} = \sqrt {{a^2} + 4{a^2}} = a\sqrt 5 \]

Xét tam giác SHC vuông tại H có:

\[\tan \widehat {SCH} = \frac{{SH}}{{HC}} = \frac{a}{{a\sqrt 5 }} = \frac{1}{{\sqrt 5 }}\]

Vậy \[\tan \widehat {SCH} = \frac{1}{{\sqrt 5 }}\].

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Từ đồ thị ta có: \[\mathop {\lim }\limits_{x \to + \infty } y = - \infty \Rightarrow a < 0\]

Gọi x1 và x2 lần lượt là hai điểm cực trị của hàm số đã cho (x1 < x2)

Từ đồ thị ta thấy: x1 + x2 > 0

Þ ab < 0 Þ b > 0

Lại có: x1.x2 > 0 Þ ac > 0 Þ c > 0

Đồ thị hàm số giao với trục tung tại điểm có tung độ y

Þ d > 0

Vậy trong các số a, b, c, d có 2 số dương.

Lời giải

Để \[A \cap B \ne \emptyset \] thì \[\left\{ \begin{array}{l}m + 1 \le 1\\m \ge 4\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}m \le 0\\m \ge 4\end{array} \right.\]

Vậy để \[A \cap B \ne \emptyset \] thì m Î (0; 4).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP