Câu hỏi:

11/07/2024 1,074 Lưu

Tìm giá trị lớn nhất của biểu thức: \[A = \frac{{ab}}{{a + b}} + \frac{{bc}}{{b + c}} + \frac{{ac}}{{a + c}}\].

Biết a + b + c = 6.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Áp dụng bất đẳng thức Cô-si ta có:

\[{(a + b)^2} \ge 4ab\]\[ \Leftrightarrow \frac{{a + b}}{4} \ge \frac{{ab}}{{a + b}}\,\,\,\,\,(1)\]

\[{(b + c)^2} \ge 4bc\]\[ \Leftrightarrow \frac{{b + c}}{4} \ge \frac{{bc}}{{b + c}}\,\,\,\,\,(2)\]

\[{(c + a)^2} \ge 4ac\]\[ \Leftrightarrow \frac{{c + a}}{4} \ge \frac{{ca}}{{c + a}}\,\,\,\,\,(3)\]

Cộng 3 vế (1); (2) và (3) ta có:

\[\frac{{a + b}}{4} + \frac{{b + c}}{4} + \frac{{c + a}}{4} \ge \frac{{ab}}{{a + b}} + \frac{{bc}}{{b + c}} + \frac{{ca}}{{c + a}}\]

Hay \[\frac{{ab}}{{a + b}} + \frac{{bc}}{{b + c}} + \frac{{ca}}{{c + a}} \le \frac{{(a + b) + (b + c) + (c + a)}}{4}\]

Suy ra \[\frac{{ab}}{{a + b}} + \frac{{bc}}{{b + c}} + \frac{{ca}}{{c + a}} \le \frac{{2(a + b + c)}}{4}\]

Suy ra \[\frac{{ab}}{{a + b}} + \frac{{bc}}{{b + c}} + \frac{{ca}}{{c + a}} \le \frac{{a + b + c}}{2} = \frac{6}{2} = 3\]

Do đó, giá trị lớn nhất của A = 3 Û a = b = c = 2.

Vậy giá trị lớn nhất của A = 3.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Từ đồ thị ta có: \[\mathop {\lim }\limits_{x \to + \infty } y = - \infty \Rightarrow a < 0\]

Gọi x1 và x2 lần lượt là hai điểm cực trị của hàm số đã cho (x1 < x2)

Từ đồ thị ta thấy: x1 + x2 > 0

Þ ab < 0 Þ b > 0

Lại có: x1.x2 > 0 Þ ac > 0 Þ c > 0

Đồ thị hàm số giao với trục tung tại điểm có tung độ y

Þ d > 0

Vậy trong các số a, b, c, d có 2 số dương.

Lời giải

Để \[A \cap B \ne \emptyset \] thì \[\left\{ \begin{array}{l}m + 1 \le 1\\m \ge 4\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}m \le 0\\m \ge 4\end{array} \right.\]

Vậy để \[A \cap B \ne \emptyset \] thì m Î (0; 4).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP